Proofs of remaining lemmas

a common exceptional set of ¯ ν λ,ρ -probability 0 for all r ∈ [ λ, ρ] ∩ R. This proves 52. ƒ Proof of Corollary 3.1. i. By Proposition 3.1 cf. [8, 28], d d v [Gh c v − vh c v] = −h c v weakly with respect to v. Thus, setting u = R λ,ρ , we have [Guv, 1 − vuv, 1] − [Guw, 1 − wuw, 1] = Z w v ux, 1d x 70 for all v, w ∈ R. Let a b in R. Setting ̟ = T € τ [N x ] η N s η, ω, τ [N x ] η N s ξ, ω Š we have β N N t θ ′ [N x ],N s η, ξ, ωa, b] = N −1 X [N a]x≤[N b] η N t ̟, θ [N x ],N s ωx = tN t −1 N a t,bt N t θ ′ [N x ],N s ω ′ Thus, by Proposition 3.2 and 70, lim N →∞ β N N t θ ′ [N x ],N s ω ′ a, b] = t Z b t a t ux, 1d x = Z b a ux, td x 71 ¯ ν λ,ρ ⊗ IP-a.s., where the last equality follows from Proposition 3.1. Now 70 implies that the r.h.s. of 30 is a continuous function of v, w, while the l.h.s. is a uniformly Lipschitz function of v, w, since the number of particles per site is bounded. It follows that one can find a single exceptional set of ¯ ν λ,ρ ⊗IP-probability 0 outside which 71 holds simultaneously for all a, b, which proves the claim. ii. Since η λ,ρ has distribution ¯ ν λ,ρ under IP , the statement follows from i with x = s = 0. ƒ

3.4 Proofs of remaining lemmas

Proof of Lemma 3.2. Let ǫ 0. We consider the probability space Ω ′ × Z + Z equipped with the product measure IP ′ ǫ := ¯ ν λ,ρ ⊗ IP ⊗ P ǫ where P ǫ is the product measure on Z whose marginal at each site is Poisson with mean K1 + ǫ. A generic element of this space is denoted by ω ′ , χ, with ω ′ = η, ξ, ω and χ ∈ Z + Z . We first prove 40. Because of 26 that is, coupled configurations are ordered under ¯ ν λ,ρ , by the attractiveness property 15, we may define γ s ω ′ := η s ξ, ω − η s T η, ξ, ω 72 19 for s ≥ 0. Therefore γ-particles represent the discrepancies between the system starting from ξ and the system starting from T η, ξ. We set pz = pz + p−z||b|| ∞ 73 and fix ¯ v such that ¯ v X z∈Z z pz 74 Let v ¯ v. Because γ x = 0 for all x 0, by the definition of current 32, φ v t ξ, ξ, ω = φ v t ω ′ + X y [v t] γ t y Therefore, to prove 40, we want to obtain lim t→∞ t −1 X y ¯ v t γ t ◦ θ ′ [β t],αt ω ′ y = 0, ¯ ν λ,ρ ⊗ IP-a.s. 75 To this end, we follow the proof of [1, Proposition 5], with minor modifications. We emphasize that even if the latter proof corresponds to α = β = 0, we will see that the arguments extend to α, β 6= 0, 0. Each γ -particle and χ-particle is given an integer label j ≤ 0, and we denote by R j resp. Z j the position of the γ -particle resp. χ-particle with label j. That is, R . and Z . must satisfy X j≤0 δ R j = X x∈Z γ xδ x , X j≤0 δ Z j = X x∈Z χxδ x 76 There is a unique way to choose such R . resp. Z . if we impose moreover that R j ≤ R j+1 resp.Z j ≤ Z j+1 for all j 0, which we will assume. By the definition of χ, the number of χ-particles between −n and 0 will be eventually larger than nK. Let W χ := inf n n ∈ Z + : Z j ≥ −[ j K] for every j ≤ −n o By Poisson large deviation bounds, the random variable W is IP ′ ǫ -a.s. finite with exponentially de- caying distribution. Since γ x ≤ K for every x ∈ Z, we have R j ≤ −[ j K] for all j ≤ 0, hence Z j ≥ R j for every j ≤ −W χ. The dynamics of R . t t≥0 is defined as follows. By 72 and the graph- ical construction, at most one discrepancy can jump at each event time of ω. If a γ-particle jumps at time t from x to y, we set R j t = y and R k t = R k t − for all k 6= j, where j is the largest label l such that R l t − = x. The choice of the largest label is arbitrary and could be replaced by any deterministic or random choice procedure, provided the corresponding source of randomness is independent of ω ′ , χ. Note that we do not in general have R j t ≤ R j+1 t for t 0, but this does not matter for our purpose. The dynamics of Z j . is defined as follows: if R j t − = x and, for some z 0 and u ∈ [0, 1], {t, x, z, u, t, x + z, −z, u} ∩ ω 6= ; 77 then Z j t = Z j t − + z. In other words, χ-particles evolve as mutually independent given their initial positions random walks, that jump from y to y + z at rate pz given by 73 for all y ∈ Z, z ≥ 0. Since a jump for R j . from R j t − = x to R j t = x + z is possible only under 77, R j ≤ Z j ⇒ ∀t 0, R j t ≤ Z j t 78 20 In view of 75, 78, we estimate X x ¯ v t γ t x = X j≤0 1 {R j t ω ′ ¯ v t} = X j≤−W χ 1 {R j t ω ′ ¯ v t} + X −W χ j≤0 1 {R j t ω ′ ¯ v t} ≤ X j≤−W χ 1 {Z j t ω ′ ¯ v t} + W χ ≤ ¯ Z t ω, χ + W χ 79 where ¯ Z t := P i≤0 1 {Z i t ¯ v t} is a Poisson random variable with mean IE ′ ǫ ¯ Z t = K1 + ǫ X j≥¯ v t IP ′ ǫ Y t j 80 for Y t a random walk starting at 0 that jumps from y to y + z with rate pz. Since ¯ v satisfies 74, repeating [1, 43–45] gives that lim t→∞ IE ′ ǫ ¯ Z t t = 0 81 Let δ 0. Since ¯ Z t is a Poisson variable, IP ′ ǫ | ¯ Z t − IE ′ ǫ ¯ Z t | δt ≤ IE ′ ǫ ¯ Z t − IE ′ ǫ ¯ Z t 4 δt 4 ≤ [IE ′ ǫ ¯ Z t − IE ′ ǫ ¯ Z t 2 ] 2 δt 4 ≤ IE ′ ǫ ¯ Z t t 2 t 2 δt 4 82 Therefore, by Borel Cantelli lemma lim t→∞ ¯ Z t − IE ′ ǫ ¯ Z t t = 0, IP ′ ǫ -a.s. 83 Since IP is invariant by θ [β t],αt , ¯ Z t θ [β t],αt ω, χ has the same distribution as ¯ Z t ω, χ under IP ′ ǫ . Thus 80–83 still hold with ¯ Z t θ [β t],αt ω, χ instead of ¯ Z t ω, χ, and lim t→∞ t −1 ¯ Z t θ [β t],αt ω, χ = 0, IP ′ ǫ -a.s. 84 Because the random variable W in 79 does not depend on ω ′ , 84 and 79 imply 75. This concludes the proof of 40. If we now define γ s as γ s ω ′ := η s T η, ξ, ω − η s η, ω and replace φ v t ω ′ by −φ v t ω ′ so that the current, which was rightwards, becomes leftwards, then the proof of 41 can be obtained by repeating the same steps as in the previous argument. ƒ Proof of Lemma 3.3. 21

i. Since

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52