The exclusion process on the infinite cluster C

Lemma 2.1. Hypotheses H2 and H3 are satisfied if there exists a positive constant c such that the random field ˆ ω c stochastically dominates a supercritical Bernoulli bond percolation. In particular, if ˆ ω itself is a supercritical Bernoulli bond percolation, then H2 and H3 are verified. If the field ω is reflection invariant or isotropic invariant w.r.t. Z d rotations by π2, then D is a diagonal matrix. In the isotropic case D is a multiple of the identity. In particular, if ω is given by i.i.d. random conductances ωb, then D is a multiple of the identity. We postpone the proof of the above Lemma to the Appendix.

2.2 The exclusion process on the infinite cluster C

ω Given a realization ω of the environment, we consider the exclusion process ηt on the graph G ω = C ω, E ω with exchange rate ωb at bond b. This is the Markov process with paths ηt in the Skohorod space D [0, ∞, {0, 1} C ω cf. [B] whose Markov generator L ω acts on local functions as L ω f η = X e∈B ∗ X x∈C ω : x+e∈C ω ωx, x + e € f η x,x+e − f η Š , 2.4 where in general η x, y z =    η y , if z = x , η x , if z = y , η z , if z 6= x, y . We recall that a function f is called local if f η depends only on η x for a finite number of sites x. By standard methods [L] one can prove that the above exclusion process ηt is well defined. Every configuration η in the state space {0, 1} C ω corresponds to a system of particles on C ω if one considers a site x occupied by a particle if η x = 1 and vacant if η x = 0. Then the exclusion process is given by a stochastic dynamics where particles can lie only on sites x ∈ C ω and can jump from the original site x to the vacant site y ∈ C ω only if the bond {x, y} has positive conductance, i.e. x and y are connected by a bond in G ω. Roughly speaking, the dynamics can be described as follows: To each bond b = {x, y} ∈ E ω associate an exponential alarm clock with mean waiting time 1 ωb. When the clock rings, the particle configurations at sites x and y are exchanged and the alarm clock restarts afresh. By Harris’ percolation argument [D], this construction can be suitably formalized. Finally, we point out that the only interaction between particles is given by site exclusion. We can finally describe the hydrodynamic limit of the above exclusion process among random con- ductances ωb on the infinite cluster C ω. If the initial distribution is given by the probability measure µ on {0, 1} C ω , we denote by P ω,µ the law of the resulting exclusion process. Theorem 2.2. For Q almost all environments ω the following holds. Let ρ : R d → [0, 1] be a Borel function and let { µ ǫ } ǫ0 be a family of probability measures on {0, 1} C ω such that, for all δ 0 and all real functions ϕ on R d with compact support shortly ϕ ∈ C c R d , it holds lim ǫ↓0 µ ǫ ¯ ¯ ¯ǫ d X x∈C ω ϕǫ x η x − Z R d ϕxρ xd x ¯ ¯ ¯ δ = 0 . 2.5 2221 Then, for all t 0, ϕ ∈ C c R d and δ 0, lim ǫ↓0 P ω,µ ǫ ¯ ¯ ¯ǫ d X x∈C ω ϕǫ x η x ǫ −2 t − Z R d ϕxρx, td x ¯ ¯ ¯ δ = 0 , 2.6 where ρ : R d × [0, ∞ → R solves the heat equation ∂ t ρ = ∇ · D∇ρ = d X i, j=1 D i, j ∂ 2 x i ,x j ρ 2.7 with boundary condition ρ at t = 0 and where the symmetric matrix D is variationally characterized by 2.1. If a density profile ρ can be approximated by a family of probability measures µ ǫ on {0, 1} C ω in the sense that 2.5 holds for each δ 0 and ϕ ∈ C c R d , then it must be 0 6 ρ 6 m a.s. On the other hand, if ρ : R d → [0, m] is a Riemann integrable function, then it is simple to exhibit for Q–a.a. ω a family of probability measures µ ǫ on {0, 1} C ω approximating ρ . To this aim we observe that, due to the ergodicity of Q and by separability arguments, for Q a.a. ω it holds lim ǫ↓0 ǫ d X x∈C ω ϕǫ x = m Z R d ϕxd x , 2.8 for each Riemann integrable function ϕ : R d → R with compact support. Fix such an en- vironment ω. Then, it is enough to define µ ǫ as the unique product probability measure on {0, 1} C ω such that µ ǫ η x = 1 = ρ ǫ xm for each x ∈ C ω. Since the random variable ǫ d P x∈C ω ϕǫ x η x is the sum of independent random variables, it is simple to verify that its mean equals ǫ d P x∈C ω ϕǫ xρ ǫ xm and its variance equals ǫ 2d P x∈C ω ϕ 2 ǫ x[ρ ǫ xm][1 − ρ ǫ xm]. The thesis then follows by means of 2.8 and the Chebyshev inequality. The proof of Theorem 2.2 is given in Section 3. As already mentioned, it is based on the general criterion for the hydrodynamic limit of exclusion processes with bond–dependent transition rates, obtained in [F] by generalizing an argument of [N], and homogenization results for the random walk on C ω with jump rates ωb, b ∈ E ω, described below.

2.3 The random walk among random conductances on the infinite cluster C

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52