The Gromov-weak topology getdoc2a71. 216KB Jun 04 2011 12:04:11 AM

Marked metric measure spaces 177 Remark 2.2 Connection to mm-spaces. In [ 13 ], the space of metric measure spaces mm-spaces was considered. These are triples X , r, µ where µ ∈ M 1 X . Two mm-spaces X , r X , µ X and Y, r Y , µ Y are equivalent if ϕ exists such that 3 holds. The set of equivalence classes of such mm-spaces is denoted by ▼, which is closely connected to the structure we have introduced in Definition 2.1. Namely for x = X , r, µ ∈ ▼ I , we set π 1 x := X , r, π X ∗ µ ∈ ▼, π 2 x := π I ∗ µ ∈ M 1 I. 6 Note that π 2 x is the distribution of marks in I and ▼ can be identified with ▼ I if I = 1. Outline: In Section 2.2, we state that the marked distance matrix distribution, arising by sub- sequently sampling points from an mmm-space, uniquely characterizes the mmm-space Theo- rem 1. Hence, we can define the marked Gromov-weak topology based on weak convergence of marked distance matrix distributions, which turns ▼ I into a Polish space Theorem 2. Moreover, we characterize relatively compact sets in the Gromov-weak topology Theorem 3. In Subsec- tion 2.3 we treat our main subject, random mmm-spaces. We characterize tightness Theorem 4 and show that polynomials, specifying an algebra of real-valued functions on ▼ I , are convergence determining Theorem 5. The proofs of Theorems 1 – 5, are given in Sections 3.1, 3.3, 4.1 and 4.3, respectively.

2.2 The Gromov-weak topology

Our task is to define a topology that turns ▼ I into a Polish space. For this purpose, we introduce the notion of the marked distance matrix distribution. Definition 2.3 Marked distance matrix distribution. Let X , r, µ be an mmm-space, x := X , r, µ ∈ ▼ I and R X ,r :    X × I ◆ → ❘ ◆ 2 + × I ◆ , x k , u k k≥1 7→ rx k , x l 1≤k l , u k k≥1 . 7 The marked distance matrix distribution of x = X , r, µ is defined by ν x := R X ,r ∗ µ ◆ ∈ M 1 ❘ ◆ 2 + × I ◆ . 8 For generic elements in ❘ ◆ 2 and I ◆ , we write r = r i j 1≤i j and u = u i i≥1 , respectively. In the above definition R X ,r ∗ µ ◆ does not depend on the particular element X , r, µ of the equivalence class x = X , r, µ, i.e. ν x is well-defined. The key property of M I is that the distance matrix distribution uniquely determines mmm-spaces as the next result shows. Theorem 1. Let x , y ∈ ▼ I . Then, x = y iff ν x = ν y . This characterization of elements in M I allows us to introduce a topology as follows. 178 Electronic Communications in Probability Definition 2.4 Marked Gromov-weak topology. Let x , x 1 , x 2 , · · · ∈ ▼ I . We say that x n n→∞ −−→ x in the marked Gromov-weak topology MGW topology iff ν x n n→∞ ==⇒ ν x 9 in the weak topology on M 1 ❘ ◆ 2 + × I ◆ , where, as usual, ❘ ◆ 2 + × I ◆ is equipped with the product topology of ❘ + and I, respectively. The next result implies that ▼ I is a suitable space to apply standard techniques of probability theory most importantly, weak convergence and martingale problems. Theorem 2. The space ▼ I , equipped with the MGW topology, is Polish. In order to study weak convergence in ▼ I , knowledge about relatively compact sets is crucial. Theorem 3 Relative compactness in the MGW topology. For Γ ⊆ ▼ I the following assertions are equivalent: i The set Γ is relatively compact with respect to the marked Gromov-weak topology. ii Both, π 1 Γ is relatively compact with respect to the Gromov-weak topology on ▼ and π 2 Γ is relatively compact with respect to the weak topology on M 1 I. Remark 2.5 Relative compactness in ▼. For the application of Theorem 3, it is necessary to characterize relatively compact sets in ▼, equipped with the Gromov-weak topology. Proposition 7.1 of [ 13 ] gives such a characterization which we recall: Let r 12 : r, u 7→ r 12 . Then the set π 1 Γ is relatively compact in ▼, iff {r 12 ∗ ν x : x ∈ Γ} ⊆ M 1 ❘ + is tight 10 and sup x =X ,r,µ∈Γ µx, u ∈ X × I : µB ǫ x × I ≤ δ δ→0 −−→ 0 11 for all ǫ 0, where B ǫ x is the open ǫ-ball around x ∈ X .

2.3 Random mmm-spaces

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52