Uniform target: path-wise behaviour

Let λ ′ 1. Since g 1 n → ˜ θ 1 and g 2 n → ˜ θ 2 there is a m 2 ≥ m 1 such that the following bounds apply 1 + ˜ θ 2 λ ′ p η n ≤ z 2 n z 2 n −1 and z 1 n z 1 n −1 ≤ 1 + λ ′ ˜ θ 1 p η n for all n ≥ m 2 . Consequently, for all n ≥ m 2 , we have that log b n+k b n ≤ log   z 1 n+k z 1 n   ≤ n+k X j=n+1 log 1 + λ ′ ˜ θ 1 pη j ≤ λ ′ θ n+k X j=n+1 p η n . Similarly, by the mean value theorem log b n+k b n ≥ n+k X j=n+1 log ‚ 1 + ˜ θ 2 λ ′ pη j Œ ≥ ˜ θ 2 λ ′ 1 + λ ′−1 ˜ θ 2 p η n n+k X j=n+1 pη j since η n is decreasing. By letting the constant m 1 above be sufficiently large, the difference | ˜ θ 2 −θ | can be made arbitrarily small, and by increasing m 2 , the constant λ ′ 1 can be chosen arbitrarily close to one.

3.3 Uniform target: path-wise behaviour

Section 3.2 characterised the behaviour of the sequence E S n when the chain X n n ≥2 follows the ‘adaptive random walk’ recursion 6. In this section, we shall verify that almost every sample path S n n ≥1 of the same process are increasing. Let us start by expressing the process S n in terms of an auxiliary process Z n n ≥1 . Lemma 13. Let u ∈ R d be a unit vector and suppose the process X n , M n , S n n ≥1 is defined through 3, 4 and 6, where W n n ≥1 are i.i.d. following a spherically symmetric, non-degenerate distribution. Define the scalar process Z n n ≥2 through Z n+1 := u T X n+1 − M n kS 1 2 n u k 13 where kxk := p x T x stands for the Euclidean norm. Then, the process Z n , S n n ≥2 follows u T S n+1 u = [1 + η n+1 Z 2 n+1 − 1]u T S n u 14 Z n+1 = θ ˜ W n+1 + U n Z n 15 where ˜ W n n ≥2 are non-degenerate i.i.d. random variables and U n := 1 − η n 1 + η n Z 2 n − 1 −12 . The proof of Lemma 13 is given in Appendix B. It is immediate from 14 that only values |Z n | 1 can decrease u T S n u. On the other hand, if both η n and η n Z 2 n are small, then the variable U n is clearly close to unity. This suggests a nearly random walk behaviour of Z n . Let us consider an auxiliary result quantifying the behaviour of this random walk. 54 Lemma 14. Let n ≥ 2, suppose ˜Z n −1 is F n −1 -measurable random variable and suppose ˜ W n n ≥n are respectively F n n ≥n -measurable and non-degenerate i.i.d. random variables. Define for ˜ Z n for n ≥ 2 through ˜ Z n+1 = ˜ Z n + θ ˜ W n+1 . Then, for any N , δ 1 , δ 2 0, there is a k ≥ 1 such that P    1 k k X j=1 1 {| ˜Z n+ j |≤N} ≥ δ 1 F n    ≤ δ 2 a.s. for all n ≥ 1 and k ≥ k . Proof. From the Kolmogorov-Rogozin inequality, Theorem 36 in Appendix C, P ˜ Z n+ j − ˜Z n ∈ [x, x + 2N] | F n ≤ c 1 j −12 for any x ∈ R, where the constant c 1 0 depends on N , θ and on the distribution of W j . In particular, since ˜ Z n+ j − ˜Z n is independent of ˜ Z n , one may set x = −Z n − N above, and thus P € | ˜Z n+ j | ≤ N F n Š ≤ c 1 j −12 . The estimate E    1 k k X j=1 1 {| ˜Z n+ j |≤N} F n    ≤ c 1 k k X j=1 j −12 ≤ c 2 k −12 implies P k −1 P k j=1 1 {| ˜Z n+ j |≤N} ≥ δ 1 F n ≤ δ −1 1 c 2 k −12 , concluding the proof. The technical estimate in the next Lemma 16 makes use of the above mentioned random walk approximation and guarantees ultimately a positive ‘drift’ for the eigenvalues of S n . The result requires that the adaptation sequence η n n ≥2 is ‘smooth’ in the sense that the quotients converge to one. Assumption 15. The adaptation weight sequence η n n ≥2 ⊂ 0, 1 satisfies lim n →∞ η n+1 η n = 1. Lemma 16. Let n ≥ 2, suppose Z n −1 is F n −1 -measurable, and assume Z n n ≥n follows 15 with non-degenerate i.i.d. variables ˜ W n n ≥n measurable with respect to F n n ≥n , respectively, and the adaptation weights η n n ≥n satisfy Assumption 15. Then, for any C ≥ 1 and ε 0, there are indices k ≥ 1 and n 1 ≥ n such that P € L n,k F n Š ≤ ε a.s. for all n ≥ n 1 , where L n,k :=    k X j=1 log h 1 + η n+ j Z 2 n+ j − 1 i kCη n    . 55 Proof. Fix a γ ∈ 0, 23. Define the sets A n: j := ∩ j i=n+1 {Z 2 i ≤ η −γ i } and A ′ i := {Z 2 i η −γ i }. Write the conditional expectation in parts as follows, P € L n,k F n Š = P € L n,k , A n:n+k F n Š + P € L n,k , A ′ n F n Š + n+k X i=n+1 P € L n,k , A n:i −1 , A ′ i F n Š . 16 Let ω ∈ A ′ i for any n i ≤ n + k and compute log ” 1 + η i Z 2 i − 1 — ≥ log ” 1 + η i η −γ i − 1 — ≥ log 1 + 2η i kC ≥ 2 η i kC 1 + 2 η i kC ≥ kCη n whenever n ≥ n is sufficiently large, since η n → 0, and by Assumption 15. That is, if n is sufficiently large, all but the first term in the right hand side of 16 are a.s. zero. It remains to show the inequality for the first. Suppose now that Z 2 n ≤ η −γ n . One may estimate U n = 1 − η n 1 2 ‚ 1 − η n Z 2 n 1 − η n + η n Z 2 n Œ 1 2 ≥ 1 − η n 1 2 1 − η 1 −γ n 1 − η n 1 2 ≥ 1 − η 1 −γ n 1 2 1 − 2η 1 −γ n 1 − η n 1 2 ≥ 1 − c 1 η 1 −γ n where c 1 := 2 sup n ≥n 1 − η n −12 ∞. Observe also that U n ≤ 1. Let k ≥ 1 be from Lemma 14 applied with N = p 8C + 1+1, δ 1 = 18 and δ 2 = ε, and fix k ≥ k +1. Let n ≥ n and define an auxiliary process ˜ Z n j j ≥n −1 as ˜ Z n j ≡ Z j for n − 1 ≤ j ≤ n + 1, and for j n + 1 through ˜ Z n j = Z n+1 + θ j X i=n+2 ˜ W i . For any n + 2 ≤ j ≤ n + k and ω ∈ A n: j , the difference of ˜ Z n j and Z j can be bounded by | ˜Z n j+1 − Z j+1 | ≤ |Z j ||1 − U j | + | ˜Z n j − Z j | ≤ c 1 η 1 − 3 2 γ j + | ˜Z n j − Z j | ≤ · · · ≤ c 1 j X i=n+1 η 1 − 3 2 γ i ≤ c 1 η 1 − 3 2 γ n j X i=n+1 η i η n 1 − 3 2 γ ≤ c 2 j − nη 1 − 3 2 γ n by Assumption 15. Therefore, for sufficiently large n ≥ n , the inequality | ˜Z n j − Z j | ≤ 1 holds for all n ≤ j ≤ n + k and ω ∈ A n:n+k . Now, if ω ∈ A n:n+k , the following bound holds log h 1 + η j Z 2 j − 1 i ≥ log ” 1 + η j min{N, |Z j |} 2 − 1 — ≥ 1 {| ˜Z n j |N} log ” 1 + η j N − 1 2 − 1 — + 1 {| ˜Z n j |≤N} log ” 1 − η j — ≥ 1 {| ˜Z n j |N} 1 − β j η j 8C − 1 {| ˜Z n j |≤N} 1 + β j η j 56 by the mean value theorem, where the constant β j = β j C, η j ∈ 0, 1 can be selected arbitrarily small whenever j is sufficiently large. Using this estimate, one can write for ω ∈ A n:n+k k X j=1 log h 1 + η n+ j Z 2 n+ j − 1 i ≥ 1 − β n X j ∈I + n+1:k η n+ j 8C − 1 + β n k X j=1 η n+ j where I + n+1:k := { j ∈ [1, k] : ˜Z n n+ j N }. Define the sets B n,k :=    1 k − 1 k −1 X j=1 1 {| ˜Z n+ j+1 |≤N} ≤ δ 1    . Within B n,k , it clearly holds that I + n+1:k ≥ k − 1 − k − 1δ 1 = 7k − 18. Thereby, for all ω ∈ B n,k ∩ A n:n+k k X j=1 log h 1 + η n+ j Z 2 n+ j − 1 i ≥ η n k – 1 − β n 7 2 inf 1 ≤ j≤k η n+ j η n C − 1 + β n ‚ sup 1 ≤ j≤k η n+ j η n Œ™ ≥ kCη n for sufficiently large n ≥ 1, as then the constant β n can be chosen small enough, and by Assumption 15. In other words, if n ≥ 1 is sufficiently large, then B n,k ∩ A n:n+k ∩ L n,k = ;. Now, Lemma 14 yields P € L n,k , A n:n+k F n Š = P € L n,k , A n:n+k , B n,k F n Š + P € L n,k , A n:n+k , B ∁ n,k F n Š ≤ P B ∁ n,k | F n ≤ ε. Using the estimate of Lemma 16, it is relatively easy to show that u T S n u tends to infinity, if the adaptation weights satisfy an additional assumption. Assumption 17. The adaptation weight sequence η n n ≥2 ⊂ 0, 1 is in ℓ 2 but not in ℓ 1 , that is, ∞ X n=2 η n = ∞ and ∞ X n=2 η 2 n ∞. Theorem 18. Assume that X n n ≥2 follows the ‘adaptive random walk’ recursion 6 and the adap- tation weights η n n ≥2 satisfy Assumptions 15 and 17. Then, for any unit vector u ∈ R d , the process u T S n u → ∞ almost surely. Proof. The proof is based on the estimate of Lemma 16 applied with a similar martingale argument as in Vihola 2009. Let k ≥ 2 be from Lemma 16 applied with C = 4 and ε = 12. Denote ℓ i := ki + 1 for i ≥ 0 and, inspired by 14, define the random variables T i i ≥1 by T i := min ¨ kM η ℓ i −1 , ℓ i X j= ℓ i −1 +1 log h 1 + η j Z 2 j − 1 i « 57 with the convention that η = 1. Form a martingale Y i , G i i ≥1 with Y 1 ≡ 0 and having differences dY i := T i − E ” T i G i −1 — and where G 1 ≡ {;, Ω} and G i := F ℓ i for i ≥ 1. By Assumption 17, ∞ X i=2 E ” dY 2 i — ≤ c ∞ X i=1 η 2 ℓ i ∞ with a constant c = ck, C 0, so Y i is a L 2 -martingale and converges a.s. to a finite limit M ∞ e.g. Hall and Heyde 1980, Theorem 2.15. By Lemma 16, the conditional expectation satisfies E ” T i+1 G i — ≥ kCη ℓ i 1 − ε + ℓ i+1 X j= ℓ i +1 log1 − η j ε ≥ kη ℓ i when i is large enough, and where the second inequality is due to Assumption 15. This implies, with Assumption 17, that P i E ” T i G i −1 — = ∞ a.s., and since Y i converges a.s. to a finite limit, it holds that P i T i = ∞ a.s. By 14, one may estimate for any n = ℓ m with m ≥ 1 that logu T S n u ≥ logu T S 1 u + m X i=1 T i → ∞ as m → ∞. Simple deterministic estimates conclude the proof for the intermediate values of n.

3.4 Stability with one-dimensional uniformly continuous log-density

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52