Representation of A getdocae42. 238KB Jun 04 2011 12:04:50 AM

Proof It is a direct consequence of Corollary 4.1.1 that A N is a 2-Sato process. By Mansuy-Yor [19, Theorem 3.4, p.38], the following extension of the Ray-Knight theorem holds: For any u 0, L a −2uN τ u , 0 ≤ a ≤ 2uN d = R 2 N a, 0 ≤ a ≤ 2uN where L x t denotes the local time of the semi-martingale |B s | − 2 N ℓ s , s ≥ 0 in x at time t. We remark that s ∈ [0, τ t ] =⇒ |B s | − 2 N ℓ s ≥ − 2t N . Therefore, the occupation times formula entails: A N t = N 2 4 Z −2tN L x τ t dx = N 2 4 Z 2t N L x −2tN τ t dx. Thus, by the above mentioned extension of the Ray-Knight theorem, A N t 1.d = N 2 4 Z 2t N R 2 N s ds . The scaling property of R N also yields the identity in law: A N t 1.d = ‚Z t R 2 N s ds Œ , and the result follows from the definition of Y N . ƒ We may now apply Proposition 2.3 to get: Corollary 4.2.1. The process V N defined by: V N t = Y N t − N t 2 2 , t ≥ 0 is a PCOC and an associated martingale is M N defined by: M N t = A N t − N t 2 2 , t ≥ 0. Moreover, M N is a centered 2-Sato process.

4.3 Representation of A

N as a process of hitting times Theorem 4.3. The process A N is identical in law to the process T t R 1, α N , t ≥ 0 where R 1, α N denotes the perturbed Bessel process defined in Subsection 3.3 and T t R 1, α N = inf{s; R 1, α N s t}. 944 The proof can be found in Le Gall-Yor [17]. Nevertheless, for the convenience of the reader, we give again the proof below. A more general result, based on Doney-Warren-Yor [6], shall also be stated in the next section. Proof In this proof, we adopt the following notation: B t still denotes a standard linear Brownian motion starting from 0, S t = sup ≤s≤t B s and σ t = inf{s; B s t}. Moreover, for a 1 and t ≥ 0, we set: H a t = B t − a S t , X a t = Z t 1 B s a S s ds and Z a t = inf{s; X a s t}. Lemma 4.3.1. Let a 1. Then M t H a := sup ≤s≤t H a s = 1 − a S t . Consequently, −a S t = α M t H a , with α = −a1 − a. Proof Since a 1, we have, for 0 ≤ s ≤ t, B s − a S s ≤ 1 − a S s ≤ 1 − a S t . Moreover, there exists s t ∈ [0, t] such that B s t = S t and therefore S s t = S t . Hence, B s t − a S s t = 1 − a S t . ƒ Lemma 4.3.2. Let a 1 and recall α = −a1 − a. We set: D a t = H a Z a t , t ≥ 0. Then the processes D a and R 1, α are identical in law. Proof a Since Z a t is a time of increase of the process X a s = Z s 1 H a u du, s ≥ 0, we get: D a t = H a Z a t ≥ 0. Moreover, since the process H a + is obviously Z a -continuous, the process D a is continuous. b By Tanaka’s formula, H a t + = Z t 1 H a s dB s − a S s + 1 2 L t H a 945 where L t H a denotes the local time of the semi-martingale H a in 0 at time t. If s 0 belongs to the support of dS s , then B s = S s and, since a 1, B s − a S s 0. Therefore, H a t + = Z t 1 B s −a S s dB s − a S t + 1 2 L t H a . By Lemma 4.3.1, −a S t = α M t H a . Consequently, D a t = Z Z a t 1 B s −a S s dB s + 1 2 L Z a t H a + α M Z a t H a . By the Dubins-Schwarz theorem, the process Z Z a t 1 B s −a S s dB s , t ≥ 0 is a Brownian motion. On the other hand, it is easy to see that L Z a t H a = L t D a and M Z a t H a = M t D a . Therefore, the process D a is a continuous and nonnegative solution to equation 1. ƒ To conclude the proof of Theorem 4.3, we observe that by Lévy’s equivalence theorem [22, Theorem VI.2.3], the process A N is identical in law to the process N 2 4 Z σ t 1 B s 1− 2 N S s ds, t ≥ 0. By the scaling property of B, the above process has the same law as Z σ N t 2 1 B s 1− 2 N S s ds = X 1 − 2 N σ N t 2 , t ≥ 0. Now, X 1 − 2 N σ N t 2 = inf{X 1 − 2 N u ; S u N t 2 } and, by Lemma 4.3.1, S u = N 2 M u H 1 − 2 N . Thus, X 1 − 2 N σ N t 2 = inf {X 1 − 2 N u ; M u H 1 − 2 N t} = inf {v; M v D 1 − 2 N t} = inf{v; D 1 − 2 N v t}. The result then follows from Lemma 4.3.2. ƒ 946 Corollary 4.3.1. The process T t R 1, α N , t ≥ 0 is a 2-Sato process and ‚Z t R 2 N s ds Œ 1.d = € T t R 1, α N Š . 5 About the process 1 K 2 R t s 21 −K K R 2 N s ds, t ≥ 0 In this section we extend Corollary 4.3.1. We fix two positive real numbers N and K. We first recall some important results on general perturbed Bessel processes R K, α with α 1.

5.1 Perturbed Bessel processes

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52