Penambangan Data Evaluasi Pola Presentasi Pengetahuan

perkalian tersebut akan dikurangi dengan nilai minimum baru dari atribut a. Maka hasil penjumlahan tersebut akan menghasilkan nilai yang sudah dinormalisasi. Tabel 3.4 merupakan tabel yang berisi data atribut nill11, nil12, nil13, nil14, dan nil15 yang belum di normalisasi. Tabel 3.4 Contoh atribut nil11, nil12, nil13, nil14, dan nil15 setelah di normalisasi No Ips1 Ips2 Ips3 Ips4 Final Normalisasi 1 2.06 2.32 2.91 3.00 2.712 2 2.72 2.50 2.96 2.38 2.710 3 3.33 3.48 3.78 3.48 2.776 4 2.39 3.00 2.43 2.82 2.864 5 2.11 2.71 2.43 2.45 2.950 6 3.00 2.96 2.61 3.29 2.703 7 3.72 3.56 3.43 3.67 3.147 8 3.44 3.04 2.88 3.48 2.853 9 2.17 2.70 3.09 3.63 2.880 10 3.89 3.75 3.00 3.62 3.080 11 2.89 3.68 2.88 3.76 2.920 12 3.11 3.08 2.78 3.48 2.727 13 2.00 2.00 2.29 3.00 3.084

3.2.4 Penambangan Data

Data Mining Data mining merupakan proses mengekstrak informasi atau pengetahuan dari data dalam jumlah yang besar. Dalam penelitian ini, metode yang digunakan adalah metode analisis outlier dengan menggunakan pendekatan density based . Algoritma yang digunakan adalah Local Correlation Integral LOCI . Data yang digunakan adalah data akademik mahasiswa Program Studi Teknik Informatika di Universitas Sanata Dharma angkatan 2007 dan 2008 dari semester satu sampai dengan semester empat. Pada tahap ini terdapat beberapa variabel yang digunakan, antara lain: 1. Variabel Input Variabel input yang digunakan terdiri dari nil11, nil12, nil13, nil14, nil15, dan nilai final. Dan terdiri dari nilai per semester yaitu nilai ips1, ips2, ips3, dan ips4. 2. Variabel output Variabel output yang digunakan adalah data mahasiswa yang menjadi outlier dari hasil perhitungan dengan algoritma Local Correlation Integral dari data nilai hasil seleksi masuk dan nilai mahasiswa dari semester satu sampai dengan semester 4. Keluaran ini berupa nomor urut mahasiswa, MDEF, K MDEF, jumlah outlier , dan lama deteksi outlier .

3.2.5 Evaluasi Pola

Pattern Evaluation Evaluasi pola merupakan proses mengidentifikasi apakah pola atau informasi yang ditemukan sesuai fakta atau hipotesa yang ada sebelumnya. Luaran yang diperoleh berupa data-data outlier menggunakan algoritma Local Correlation Integral dan akan diuji kebenarannya oleh pemilik data apakah hipotesa outlier yang mereka miliki sama dengan hasil yang diperoleh sistem.

3.2.6 Presentasi Pengetahuan

Knowledge Presentation Knowledge presentation merupakan proses merepresentasikan pola kepada pengguna ke dalam bentuk yang mudah dimengerti. Dengan adanya sistem ini, diharapkan dapat membantu pihak Universitas Sanata Dharma dalam mendeteksi outlier melalui hasil tes masuk baik melalui jalur tes tertulis maupun jalur prestasi dan nilai per semester dari semester 1 sampai dengan semester 4. 35

BAB IV ANALISIS DAN PERANCANGAN SISTEM

Dokumen yang terkait

Deteksi outlier menggunakan Algoritma Local Correlation Integral (LOCI) : studi kasus data akademik mahasiswa Teknik Informatika Universitas Sanata Dharma.

0 0 258

Deteksi outlier menggunakan Algoritma Local Outlier Probability : studi kasus data akademik mahasiswa Program Studi Teknik Informatika Universitas Sanata Dharma.

0 5 265

Deteksi outlier menggunakan Algoritma Connectivity Based Outlier Factor : studi kasus data akademik mahasiswa Teknik Informatika Universitas Sanata Dharma.

0 4 252

Deteksi Outlier menggunakan algoritma Block-Based Nested-Loop : studi kasus data akademik mahasiswa Program Studi Teknik Informatika Universitas Sanata Dharma.

0 2 202

Deteksi Outlier menggunakan algoritma Naive Nested Loop : studi kasus data akademik mahasiswa Program Studi Teknik Informatika, Universitas Sanata Dharma, Yogyakarta.

2 3 236

Deteksi outlier menggunakan Algoritma Connectivity Based Outlier Factor studi kasus data akademik mahasiswa Teknik Informatika Universitas Sanata Dharma

1 8 250

Deteksi outlier menggunakan Algoritma Local Outlier Probability studi kasus data akademik mahasiswa Program Studi Teknik Informatika Universitas Sanata Dharma

1 9 263

Deteksi Outlier menggunakan algoritma Block Based Nested Loop studi kasus data akademik mahasiswa Program Studi Teknik Informatika Universitas Sanata Dharma

0 1 200

Deteksi outlier menggunakan algoritma local outlier factor : studi kasus data akademik mahasiswa TI Universitas Sanata Dharma - USD Repository

0 0 241

Deteksi Outlier menggunakan algoritma Naive Nested Loop : studi kasus data akademik mahasiswa Program Studi Teknik Informatika, Universitas Sanata Dharma, Yogyakarta - USD Repository

0 0 234