Pra Rancangan Pabrik Pembuatan Minyak Makan Merah Dari Crude Palm OIL (CPO) DENGAN KAPASITAS 45000 TON / TAHUN
PRA RANCANGAN PABRIK
PEMBUATAN MINYAK MAKAN MERAH
DARI CRUDE PALM OIL (CPO)
DENGAN KAPASITAS 45000 TON / TAHUN
TUGAS AKHIR
Diajukan Untuk Memenuhi Persyaratan Ujian Sarjana Teknik Kimia
Oleh :
SAMRISJEN S. MANIK NIM : 060425004
PROGRAM STUDI TEKNIK KIMIA EKSTENSI
FAKULTAS TEKNIK
UNIVERSITAS SUMATERA UTARA
MEDAN
2008
(2)
INTI SARI
Pabrik Minyak Makan Merah dari CPO ini direncanakan berproduksi dengan kapasitas 45000 ton/tahun dengan 350 hari kerja dalam 1 (satu) tahun. Proses yang digunakan adalah memurnikan CPO dari asam lemak jenuk (Stearin) melalui proses Kristalisasi dengan mengunakan temperatur proses 10oC dan memurnikan CPO dari impuritis dengan menggunakan H3PO4 85 % dan
memisahkan Free Fatty Acid (FFA) dari CPO dengan mereaksikan FFA terhadap NaOH dalam suatu Reaktor hingga membentuk sabun dan untuk mengefektifkan kemurnian Minyak Makan Merah dari FFA dan air maka CPO (Olein) diproses kembali pada unit Deodorizer dengan menggunakan temperatur 160oC.
Lokasi pabrik direncanakan berada di daerah Dumai, kabupaten Bengkalis yang merupakan hilir sungai Rokan, Provinsi Riau dengan luas tanah yang dibutuhkan adalah 19604 m2
Jumlah tenaga kerja yang di butuhkan untuk mengoperasikan pabrik sebanyak 160 orang dan bentuk badan usaha yang direncanakan adalah perseroan terbatas (PT) dan bentuk organisasinya adalah organisasi garis dan staf.
Hasil analisa terhadap aspek ekonomi Minyak Makan Merah, adalah :
Total modal investasi : Rp. 343.300.289.400,-
Biaya Produksi : Rp. 135.222.445.200,-
Hasil penjualan/ tahun : Rp. 449.983.732.800,-
Laba Bersih : Rp. 220.350.401.300,-
Profit Margin : 69,95 %
Break Even Point (BEP) : 20,84 %
(3)
Pay Out Time (POT) : 1,6 tahun
Internal Rate of Return (IRR) : 71,51 %
Dari hasil analisa aspek ekonomi, maaka dapat disimpulkan bahwa pabrik pembuatan Minyak Makan Merah ini layak didirikan.
(4)
DAFTAR ISI
LEMBAR PENGESAHAN
KATA PENGANTAR... i
INTI SARI... ii
DAFTAR ISI... iii
DAFTAR GAMBAR... v
DAFTAR TABEL... vi BAB I PENDAHULUAN ...I-1 1.1. Latar Belakang ...I-1 1.2. Rumusan Masalah...I-2
1.3. Tujuan Perancangan...I-3 1.4. Manfaat Perancangan...I-3
BAB II TINJAUAN PUSTAKA...II-1 2.1. Crude Palm Oil (CPO) ... II-1 2.2. Minyak Makan Merah... II-3 2.3. Peranan Karotenoida Bagi Manusia... II-5 2.4. Proses Pengolahan Minyak Makan Merah ... II-6 2.5. Deskripsi Proses... II-6
2.5.1 Proses Kristalisasi ... II-6 2.5.2 Proses Mixer ... II-8 2.5.3 Proses Reaktor... II-10 2.5.4 Proses Deodorisasi ... II-11 BAB III NERACA MASSA...III-1
BAB IV NERACA ENERGI...IV-1 BAB V SPESIFIKASI PERALATAN ...V-1 BAB VI INSTRUMENTASI DAN KESELAMATAN KERJA ...VI-1
6.1. Instrumentasi ...VI-1 6.2. Keselamatan Kerja Pabrik...VI-18
(5)
BAB VII UTILITAS...VII-1 7.1. Kebutuhan Steam ... VII-1 7.2. Kebutuhan Air... VII-2 7.3. Kebutuhan Listrik ... VII-15 7.4. Kebutuhan Bahan Bakar ... VII-17 7.5. Unit Pengolahan Limbah ... VII-19 7.6. Luas Area Pengolahan Limbah ... VII-29 7.7. Spesifikasi Peralatan Utilitas ... VII-30 BAB VIII LOKASI DAN TATA LETAK PABRIK...VIII-1
8.1. Lokasi Pabrik ... VIII-1 8.2. Tata Letak Pabrik ... VIII-6 8.3. Perincian Luas Tanah... VIII-8 BAB IX ORGANISASI DAN MANAJEMEN PERUSAHAAN ...IX-1
9.1. Organisasi Perusahaan ...IX-1
9.2. Manajemen Perusahaan...IX-4 9.3. Bentuk Hukum Badan Usaha ...IX-6
9.4. Uraian Tugas, Wewenang, dan Tanggung Jawab ...IX-8 9.5. Tenaga Kerja dan Jam Kerja ...IX-13 9.6. Sistem Penggajian ...IX-17 9.7. Kesejahteraan Karyawan...IX-18 BAB X EKONOMI DAN PEMBIAYAAN ...X-1
10.1. Modal Investasi ... X-2 10.2. Biaya Produksi Total... X-5 10.3. Total Penjualan ... X-6 10.4. Perkiraan Rugi/Laba Usaha ... X-6 10.5. Analisa Aspek Ekonomi... X-7 BAB XI KESIMPULAN...XI-1 DAFTAR PUSTAKA
LAMPIRAN A PERHITUNGAN NERACA MASSA LAMPIRAN B PERHITUNGAN NERACA ENERGI
LAMPIRAN C PERHITUNGAN SPESIFIKASI PERALATAN
(6)
LAMPIRAN D PERHITUNGAN SPESIFIKASI PERALATAN UTILITAS LAMPIRAN E PERHITUNGAN ASPEK EKONOMI
(7)
DAFTAR GAMBAR
Gambar 6.1 Instrumentasi Pada Tangki...VI-13 Gambar 6.2 Instrumentasi Pada Pompa ...VI-13 Gambar 6.3 Instrumentasi Pada Reaktor...VI-14 Gambar 6.4 Instrumentasi Pada Mixer...VI-15 Gambar 6.5 Instrumentasi Pada Cooler...VI-16 Gambar 6.6 Instrumentasi Pada Filter Press...VI-16 Gambar 6.7 Instrumentasi Pada Crystalizer...VI-17 Gambar 6.8 Instrumentasi Pada Screw Conveyor...VI-17 Gambar 6.9 Tingkat Kerusakan di Suatu Pabrik...VI-19 Gambar 8.1 Tata Letak Lokasi Pabrik Minyak Makan Merah ... VIII-3 Gambar 9.1 Struktur Organisasi Perusahaan ...IX-19 Gambar LD.1 Diagram RF...LD-95 Gambar LE.1 Harga Peralatan Untuk Tangki Penyimpanan ... LE-6 Gambar LE.2 Grafik BEP ... LE-30
(8)
DAFTAR TABEL
Tabel 2.1 Komposisi Asam Lemak dari CPO ... II-2 Tabel 2.2 Sifat-sifat Kimia dari Minyak Kelapa Sawit (CPO) ... II-3 Tabel 2.3 Sifat Fisik dan Kimia dari Minyak Makan Merah ... II-4 Tabel 2.4 Titik Cair Asam Lemak dari CPO... II-7 Tabel 2.5 Sifat Fisik dan Kimia Crude Olein... II-8 Tabel 3.1 Neraca Massa Pada Filter Press I (H-1) ... III-2 Tabel 3.2 Neraca Massa Pada Mixer (M-1) ... III-3 Tabel 3.3 Neraca Massa Pada Filter Press II (H-2)... III-4 Tabel 3.4 Neraca Massa Pada Reaktor (R-1) ... III-5 Tabel 3.5 Neraca Massa Pada Filter Press III (H-3)... III-6 Tabel 3.6 Neraca Massa Pada Deodorizer (V-1) ... III-2 Tabel 4.1 Neraca Panas Pada Tangki Penyimpanan (F-1) ...IV-1 Tabel 4.2 Neraca Panas Pada Kristalizer (P-1) ...IV-2 Tabel 4.3 Neraca Panas Pada Mixer (M-1) ...IV-2 Tabel 4.4 Neraca Panas Pada Reaktor (R-1) ...IV-3 Tabel 4.5 Neraca Panas Pada Deodorizer (V-1) ...IV-4 Tabel 4.6 Neraca Panas Pada Cooler (E-1) ...IV-5 Tabel 6.1 Daftar Penggunaan Instrumentasi ...VI-12 Tabel 7.1 Kebutuhan Steam ... VII-2 Tabel 7.2 Kebutuhan Air Pendingin... VII-3 Tabel 7.3 Kualitas Air Sungai Rokan ... VII-5 Tabel 7.4 Perincian Kebutuhan Listrik Pada Unit Proses ... VII-15 Tabel 7.5 Perincian Kebutuhan Listrik Pada Unit Utilitas... VII-16 Tabel 7.6 Perincian Kebutuhan Listrik Untuk Pabrik ... VII-17 Tabel 7.7 Jumlah Luas Area Pengolahan Limbah... VII-29 Tabel 8.1 Perincian Luas Bangunan... VIII-9 Tabel 8.2 Keterangan Gambar ... VIII-12 Tabel 9.1 Jumlah Tenaga Kerja Beserta Tingkat Pendidikan ...IX-14
(9)
Tabel 9.2 Pembagian Kerja Shift Tiap Regu ...IX-16 Tabel 9.3 Gaji Karyawan ...IX-17 Tabel 10.1 Modal Investasi Tetap ... X-3 Tabel 10.2 Modal Kerja ... X-4 Tabel 10.3 Biaya Tetap ... X-5 Tabel 10.4 Biaya Variabel... X-6 Tabel LB.1 Estimasi Cp Liquid Ikatan yang Terkandung Dalam CPO ... LB-1 Tabel LB.2 Cp Bahan dan Berat Molekul (BM) ... LB-3 Tabel LB.3 Estimasi ∆Hf Ikatan yang Terkandung Dalam CPO ... LB-4 Tabel LB.4 Neraca Panas Pada Tangki Penyimpanan (F-1) ... LB-8 Tabel LB.5 Neraca Panas Pada Kristalizer (P-1) ... LB-12 Tabel LB.6 Jumlah Panas Masuk Pada Alur 3... LB-14 Tabel LB.7 Jumlah Panas Keluar Pada Alur 5... LB-15 Tabel LB.8 Neraca Panas Pada Mixer (M-1) ... LB-17 Tabel LB.9 Jumlah Panas Masuk Pada Alur 7... LB-20 Tabel LB.10 Jumlah Panas Keluar Pada Alur 9... LB-21 Tabel LB.11 Neraca Panas Pada Reaktor (R-1) ... LB-23 Tabel LB.12 Jumlah Panas Pada Alur 11... LB-26 Tabel LB.13 Jumlah Panas Pada Alur 12... LB-26 Tabel LB.14 Jumlah Panas Pada Alur 13... LB-27 Tabel LB.15 Neraca Panas Pada Deodorizer (V-1) ... LB-29 Tabel LB.16 Neraca Panas Pada Cooler (E-1) ... LB-31 Tabel LE.1 Perincian Harga Bangunan... LE-2 Tabel LE.2 Indeks Marshall dan Swift ... LE-3 Tabel LE.3 Tipe Harga Eksponensial Peralatan ... LE-5 Tabel LE.4 Perincian Harga Peralatan Proses... LE-8 Tabel LE.5 Perincian Harga Peralatan Utilitas ... LE-9 Tabel LE.6 Sarana Transportasi... LE-12 Tabel LE.7 Gaji Pegawai ... LE-17 Tabel LE.8 Perincian Pajak Bumi dan Bangunan ... LE-18 Tabel LE.9 Perincian Biaya Kas ... LE-19
(10)
Tabel LE.10 Perincian Modal Kerja ... LE-20 Tabel LE.11 Aturan Depresiasi Sesuai UU R.I No. 17 Thn. 2000 ... LE-21 Tabel LE.12 Perkiraan Biaya Depresiasi ... LE-22 Tabel LE.13 UU No. 17 Thn. 2000... LE-26 Tabel LE.14 Data Perhitungan IRR ... LE-29
(11)
INTI SARI
Pabrik Minyak Makan Merah dari CPO ini direncanakan berproduksi dengan kapasitas 45000 ton/tahun dengan 350 hari kerja dalam 1 (satu) tahun. Proses yang digunakan adalah memurnikan CPO dari asam lemak jenuk (Stearin) melalui proses Kristalisasi dengan mengunakan temperatur proses 10oC dan memurnikan CPO dari impuritis dengan menggunakan H3PO4 85 % dan
memisahkan Free Fatty Acid (FFA) dari CPO dengan mereaksikan FFA terhadap NaOH dalam suatu Reaktor hingga membentuk sabun dan untuk mengefektifkan kemurnian Minyak Makan Merah dari FFA dan air maka CPO (Olein) diproses kembali pada unit Deodorizer dengan menggunakan temperatur 160oC.
Lokasi pabrik direncanakan berada di daerah Dumai, kabupaten Bengkalis yang merupakan hilir sungai Rokan, Provinsi Riau dengan luas tanah yang dibutuhkan adalah 19604 m2
Jumlah tenaga kerja yang di butuhkan untuk mengoperasikan pabrik sebanyak 160 orang dan bentuk badan usaha yang direncanakan adalah perseroan terbatas (PT) dan bentuk organisasinya adalah organisasi garis dan staf.
Hasil analisa terhadap aspek ekonomi Minyak Makan Merah, adalah :
Total modal investasi : Rp. 343.300.289.400,-
Biaya Produksi : Rp. 135.222.445.200,-
Hasil penjualan/ tahun : Rp. 449.983.732.800,-
Laba Bersih : Rp. 220.350.401.300,-
Profit Margin : 69,95 %
Break Even Point (BEP) : 20,84 %
Return of Investment (ROI) : 64,18 %
(12)
Pay Out Time (POT) : 1,6 tahun
Internal Rate of Return (IRR) : 71,51 %
Dari hasil analisa aspek ekonomi, maaka dapat disimpulkan bahwa pabrik pembuatan Minyak Makan Merah ini layak didirikan.
(13)
BAB I PENDAHULUAN
1.1Latar Belakang
Kelapa sawit merupakan tanaman yang dapat tumbuh dengan baik di daerah tropis dengan curah hujan 2000 mm/tahun dan kisaran suhu 22-320C. Di Indonesia sendiri kelapa sawit ini cukup banyak ditanam, hal ini menjadikan kelapa sawit merupakan salah satu tanaman hasil perkebunan utama. Pohon kelapa sawit menghasilkan banyak minyak kelapa sawit yang mengandung komponen minor yang memiliki nilai nutrisi tinggi seperti senyawa karotenoida
dan vitamin E (tokoferol dan tokotrienol). (Susilawati, E. 1997)
Minyak kelapa sawit merupakan bahan baku utama minyak makan di mana minyak kelapa sawit merupakan sumber karotenoida alami yang paling tinggi dibandingkan dengan minyak nabati lainnya. Beberapa jenis senyawa
karotenoida minyak kelapa sawit diketahui memiliki aktivitas pro-vitamin A, dimana pro-vitamin A tersebut 10 kali lebih besar dibandingkan dengan wortel dan 300 lebih besar dibandingkan dengan tomat. Vitamin A sangat berperan dalam meningkatkan ketahanan tubuh terhadap infeksi, membantu pertumbuhan gigi dan pembentukan tulang selama masa pertumbuhan. Disamping sebagai bahan baku vitamin A, karotenoida juga berperan sebagai antioksida dalam menghambat atau mencegah terjadinya katarak, kanker dan arterosklerosis. (Pangaribuan, Y. 2005)
Sejalan dengan semakin disadarinya peran penting karotenoida bagi kesehatan manusia serta dalam rangka meningkatkan nilai tambah dan sebagai
(14)
antisipasi menghadapi kejenuhan konsumen akan minyak sawit mentah, di mana minyak sawit mentah yang beredar saat ini hanya mengandung karotenoida dalam jumlah 17 ppm maka dikembangkanlah proses pengolahan minyak sawit yang kaya karotenoida yaitu minyak sawit merah atau minyak makan merah. (Jatmika, A. 1996)
Minyak makan merah adalah minyak alami hasil pengolahan lanjut CPO (crude palm oil), tanpa bahan perwarna dan pengawet buatan. Minyak makan merah kaya akan karotenoida dan vitamin E dengan jumlah masing-masing 440 ppm dan 500 ppm (Susilawati, E. 1997). Tingkat konsumsi minyak makan merah di Indonesia per kapita per tahun adalah 15 kg atau setara dengan 41 g/hari. Kebutuhan vitamin A untuk orang dewasa sekitar 800-1000 RE (retinol equivalent). Dengan demikian, mengkonsumsi minyak makan merah 12 g/hari atau 29,2 % dari konsumsi minyak per hari, sudah dapat memenuhi kebutuhan vitamin A untuk orang dewasa.
1.2Rumusan Masalah
Sebagai negara penghasil minyak makan terbesar kedua setelah Malaysia, Indonesia kiranya dapat menghasilkan minyak makan yang sangat kaya akan
karotenoida guna memenuhi kebutuhan manusia akan sumber vitamin A dan vitamin E. Minyak sawit yang beredar di pasar saat ini hanya mengandung karotenoida dalam jumlah yang sangat kecil yaitu 17 ppm (Jatmika, A. 1996) bila dibandingkan minyak makan merah yang memiliki kandungan karotenoida 500 ppm.
(15)
1.3Tujuan Perancangan
Tujuan rancangan pabrik pembuatan Minyak Makan Merah dari CPO (crude palm oil) ini adalah untuk mengaplikasikan disiplin ilmu teknik kimia yang meliputi neraca massa, neraca energi, spesifikasi peralatan, opersi teknik kimia, utilitas, dan bagian ilmu teknik kimia lainny serta untuk mengetahui aspek ekonomi dalam pembiayaan pabrik sehingga akan memberikan gambaran kelayakan pra-rancangan pebrik pembuatan Minyak Makan Merah dari CPO (crude palm oil).
1.4Manfaat Perancangan
Manfaat dari pra-rancangan ini adalah :
1. Memberikan gambaran tentang kelayakan pra-rancangan pabrik pembuatan Minyak Makan Merah dari CPO (crude palm oil).
2. Meningkatkan devisa negara dengan meningkatkan nilai jual dari minyak makan yang kaya akan karotenoida.
3. Menciptakan lapangan kerja sehingga mengurangi jumlah pengangguran.
(16)
BAB II
TINJAUAN PUSTAKA
2.1 Crude Palm Oil (CPO)
Tanaman kelapa sawit (Elaeis guinensis JACQ) adalah tanaman berkeping satu yang termasuk dalam famili palmae. Nama genus Elaeis berasal dari bahasa yunani Elaoin atau minyak sedangkan nama species Guinensis berasal dari kata
Guinea, yaitu tempat di mana seorang ahli bernama Jacquin menemukan tanaman kelapa sawit pertama kali di pantai Guinea. Salah satu dari beberapa tanaman golongan palm yang dapat menghasilkan minyak adalah kelapa sawit (Elaeis guinensis JACQ).
Minyak dari buah kelapa sawit terdiri dari minyak inti sawit (crude palm kernel oil, CPKO) dan minyak kelapa sawit (crude palm oil, CPO) yang diperoleh dari inti kelapa sawit dan bagian mesokarp dari buah kelapa sawit (Choo, dkk.,1987). Dari tahun 80 an sampai akhir tahun 2000 luas perkebunan kelapa sawit Indonesia telah mencapai 3,2 juta Ha dengan produksi CPO sebesar 6,5 juta ton. Perkembangan perkebunan ini akan terus berlanjut dan diperkirakan pada tahun 2012, Indonesia akan menjadi produsen terbesar di dunia dengan total produksi 15 juta ton/tahun. (Darnoko, dkk.,2003)
Minyak kelapa sawit (CPO) mempunyai karakteristik yang khas dibandingkan dengan minyak nabati lainnya seperti minyak kacang kedelai, minyak biji kapas, minyak jagung dan minyak biji bunga matahari. Dengan
(17)
kandungan asam lemak tidak jenuh yang tinggi (50,2 %), minyak kelapa sawit sangat cocok digunakan sebagai medium penggoreng. (choo, dkk.,1987)
Tabel 2.1 Komposisi asam lemak dari CPO
Jumlah (%)
Asam Lemak Rumus
Molekul Range Rata-rata
Asam Lemak Jenuh
Laurat Miristat Palmitat Stearat Arakhidoat
Asam Lemak Tak Jenuh
Palmitoleat Oleat Linoleat Linolenat
C12: 0
C14: 0
C16: 0
C18: 0
C20: 0
C16: 1
C18: 1
C18: 2
C18 : 3
0,1 - 1,0 0,9 – 1,5 41,8 – 46,8
4,2 – 4,1 0,2 – 0,7
0,1 – 0,3 37,3 – 40,8
9,1 – 11,0 0 – 0,6
0,2 1,1 44,0 4,5 0,4 0,1 39,2 10,1 0,4 Sumber : Hamilton (1995)
Minyak kelapa sawit (CPO) mengandung karotenoida mencapai 1000 ppm, tetapi dalam minyak dari jenis tenera 500 ppm dan kandungan tokoferol
bervariasi karena dipengaruhi oleh penanganan selama produksi (Ketaren, 1986). Sifat fisik- kimia minyak kelapa sawit (CPO) meliputi warna, kelarutan, titik cair, titik didih, bobot jenis, indeks bias, titik kekeruhan (turbidity point) dan lain-lain. Beberapa sifat fisika-kimia dapat dilihat pada Tabel 2.2
(18)
Tabel 2.2 Sifat fisika-kimia dari minyak kelapa sawit (CPO)
Sifat Minyak Kelapa Sawit (CPO)
Bobot jenis pada suhu kamar 0,9
Indeks bias 40oC 1,4565 – 1,4585
Bilangan Iod 48 – 56
Bilangan penyabunan 196 – 205
Titik leleh 25 – 50 oC
Sumber : Krischenbauer (1960)
2.2 Minyak Makan Merah
Pengolahan minyak sawit menjadi minyak goreng pada skala komersial mengeliminasi dengan sengaja provitamin A dan Vitamin E yang justru merupakan salah satu keungulan minyak kelapa sawit (CPO) dibandingkan minyak nabati lainnya. Bila kandungan giji mikro yang kaya dalam minyak sawit mentah (sekitar 500 ppm pro-vitamin A dan 600-1000 ppm vitamin E) dipertahankan menberikan konstribusi sangat positif terhadap status gizi dan kesehatan konsumen (Susilawati, E. 1997). Anjuran untuk mengkonsumsi sedikitnya 3 - 3,5 mg pro-vitamin A (berbeda menurut usia) dapat dipenuhi melalui produk-produk olahan minyak makan merah. Minyak makan merah ini dapat digunakan dalam bentuk kapsul, minyak sayur, minyak salad pada produk pangan tertentu misalnya mie instan, atau bahan baku dalam pembuatan margarin dan shortening serta produk minyak/lemak pangan lainnya. (Darnoko, dkk.,2003)
(19)
Minyak makan merah adalah minyak alamiah hasil pengolahan lanjut dari minyak kelapa sawit (CPO), tanpa pewarna dan pengawet buatan. Minyak makan merah merupakan satu-satunya minyak makan yang kaya dengan karotenoida
(pro-vitamin A, 440 ppm), sekaligus kaya dengan vitamin E ( 500 ppm). Keduanya terbukti secara ilmiah sangat esensial untuk kesehatan, sistem kekebalan tubuh, anti-oksida, penundaan penuaan, dan pencegahan kanker. (Darnoko, dkk.,2003). Berikut ini dapat dilihat sifat fisik dan kimia minyak makan merah pada Tabel 2.3.
Tabel 2.3 Sifak fisik dan kimia minyak makan merah
Variabel Minyak Makan
Merah
Komposisi Asam lemak (%) C14 (miristat)
C16 (palmiat)
C18 (stearat)
C18 : 1 (oleat)
C18 : 2 (linoleat)
C18 : 3 (linilenat)
0,8016 38,1968
2,1836 43,2783 14,8416 0,2221
Could Point (oC) 7
Bilangan Iod 59,26
Kadar karotenoida (ppm) 410
Sumber : Jatmika dan Guritno (1997)
(20)
2.3 Peranan Karotenoida Bagi Manusia
Minyak kelapa sawit mengandung karotenoida alami yang paling besar bila dibandingkan dengan minyak nabati lainnya. Namun, orang yang sudah terbiasa mengkonsumsi minyak nabati yang diekstrak bukan berasal dari kelapa sawit cenderung tidak mau mengkonsumsi minyak sawit dalam bentuk tidak dimurnikan. Hal ini disebabkan oleh karena secara visual minyak sawit mentah terlihat keruh bahkan terlihat adanya endapan disebabkan banyak fraksi padat berwarna orange kemerahan, aromanya tajam, dan kadar asam lemak bebasnya cukup besar. Oleh karena itu untuk konsumsi pada masa sekarang minyak sawit mentah diolah terlebih dahulu untuk mendapat minyak sawity dimurnikan, dipucatkan dan diawabaukan (refined, bleached, deodorized palm oil), yang terbukti dapat diterima oleh konsumen minyak nabati seluruh dunia. (Jatmika, A.,1996)
Sejalan dengan semakin disadarinya peran penting karotenoida bagi kesehatan manusia, menjelang memasuki dasawarsa 90-an mulai dikembangkan khusus pengolahan minyak sawit kaya karotenoida (Jatmaika, A.,1996).
Karotenoida minyak kelapa sawit memiliki aktivitas pro-vitamin A, dimana vitamin A sangat berperan dalam meningkatkan ketahanan tubuh terhadap infeksi, membantu pertumbuhan gigi dan pembentukan tulang selama masa pertumbuhan. Disamping sebagai bahan baku vitamin A, karotenoida juga berperan sebagai antioksida dalam menghambat atau mencegah terjadinya katarak, kanker dan arterosklerosis. (Pangaribuan, Y. 2005)
(21)
2.4 Proses Pengolahan Minyak Makan Merah
Pada dasarnya dapat dikatakan bahwa proses produksi minyak makan merah yang telah dikembangkan merupakan modifikasi dari proses yang selama digunakan pada pengolahan fraksi cair minyak sawit (olein) dimurnikan, dipucatkan dan diawabaukan. Proses modifikasi dilakukan pada tahap deasidifikasi dan deodorisasi serta proses pemucatan karena pada proses ini terjadi perusakan dan kehilangan karotenoida (Jatmika,1996). Pada proses pemucatan, karotenoida akan terserap pada bahan pemucat, sedangkan pada proses desidifikasi dan deodorisasi yang mengunakan suhu tinggi yaitu 260 – 280 oC,
karotenoida mengalami degradasi.
2.5 Deskripsi Proses 2.5.1 Proses Kristalisasi
Minyak CPO ini terdiri dari fraksi-fraksi asam lemak yang belum terpisahkan, upaya untuk pemisahan selanjutnya perlu dilakukan agar dapat dikonsumsi sebagai bahan makanan. Kristalisasi adalah proses pemisahan
thermomechanical yang digunakan untuk memisahkan minyak kelapa sawit (CPO) atas fraksi padat (stearin) dan fraksi cair (olein) secara kristalisasi parsial yang diikuti dengan penyaringan, dimana proses ini didasarkan atas perbedaan titik cair masing-masing fraksi dari minyak kelapa sawit (CPO). (Pasifik Palmindo Industri, 2006)
Untuk mendapat pemisahan yang baik, kristal stearin harus dalam bentuk yang kokoh dan bentuk bola yang berukuran seragam. Awalnya minyak kelapa sawit CPO dipanaskan dari temperatur 25oC sampai temperatur 50 oC yang
(22)
merupakan diatas rata-rata titik cair asam lemak dapat dilihat pada Tabel 2.4, hal ini dilakukan untuk menghomogenkan minyak kelapa sawit. Kemudian CPO tersebut dialirkan dengan menggunakan pompa ke unit kristalizer, dimana temperatur bahan pada unit kristalizer harus dipertahankan dari 50oC menjadi sebesar 12oC. Proses penurunan temperatur bahan tersebut dilakukan melalui 2 tahap yaitu tahap cooling menggunakan air pendingin 10oC dan tahap chilling
menggunakan chilling water 6oC. Proses pada unit ini membutuhkan waktu selama 5 jam untuk membentuk kristal stearin yang kokoh dan bentuk bola yang berukuran seragam.
Tabel 2.4 Titik cair asam lemak dari CPO
Asam Lemak Rumus
Molekul
Titik Cair (oC) Asam Lemak Jenuh
Laurat Miristat Palmitat Stearat Arakhidoat
Asam Lemak Tak Jenuh
Palmitoleat Oleat Linoleat Linolenat
C12: 0
C14: 0
C16: 0
C18: 0
C20: 0
C16: 1
C18: 1
C18: 2
C18 : 3
44 58 64 69,4 76,3 - 14 -11 -
Sumber : Krischenbauer (1960) Campuran kemudian dialirkan ke filter press (H-1), untuk memisahkan fraksi
(23)
asam-asam stearat dan 15 % asam-asam-asam-asam olein, serta fraksi cair (filtrat) yang mengandung 85 % asam-asam olein dan 15 % asam-asam stearat. Fraksi cair (filtrat) yang diperoleh akan dialirkan ke tangki mixer (M-1) dengan menggunakan pompa sedangkan fraksi padat akan jatuh ke bak penampungan (Pasifik Palmindo Industri, 2006).
Tabel 2.5 Sifat fisik dan kimia Crude Olein
Variabel Crude Olein
Komposisi Asam lemak (%) C14 (miristat)
C16 (palmiat)
C18 (stearat)
C18 : 1 (oleat)
C18 : 2 (linoleat)
C18 : 3 (linilenat)
0,6568 37,1687
3,7811 42,1523 15,6784 0,3673
Could Point (oC) 8
Bilangan Iod 57,83
Perolehan Olein 86,23
Sumber : Guritno (1997)
2.5.2 Proses Mixer
Minyak kelapa sawit (CPO) yang telah melalui tahap kristalisasi masih mengandung sejumlah kecil dari senyawa phospholipids dan kotoran-kotoran yang harus dihilangkan terlebih dahulu (treatment process) sebelum proses deodorisasi. Golongan phospholipids (hydratable dan unhydratable gums) adalah ester komplek yang mengandung unsur phospor, nitrogen, gula dan rantai panjang
(24)
fatty acid. Dengan sejumlah kecil asam phospat (H3PO4) 85% harus ditambahkan
untuk menghilangkan hydratable dan unhydratable gums (phospholipids). Gum-gum yang diperoleh dari proses ini mengandung : phospholipid, karbohidrat, protein, logam dan sebangian kecil dari asam lemak bebas (Munch, E.W.,2007).
Tujuan proses mixer adalah untuk menghilangkan gum yang merupakan getah atau lendir tanpa mengurang jumlah asam lemak bebas dalam crude olein. Gum yang diperoleh dari proses ini mengandung : phospholipid, karbohidrat, protein, logam dan sebangian kecil dari asam lemak bebas (Munch, E.W.,2007). Asam phospat (H3PO4) yang digunakan berfungsi untuk dekomposisi/merubah
bentuk dari hydratabe phosphatidis hingga mudah dikentalkan dan menjadikannya tak mudah untuk larut dalam CPO sehingga mudah dipisahkan.
Pada proses ini membutuhkan temperatur sebesar 70oC, sehingga untuk mencapai temperatur bahan dari 12oC menjadi 70oC membutuhkan media penghantar panas berupa superheated steam. Dimana superheated steam 200oC tersebut dilairkan pada koil-koil yang telah di desain pada tangki mixer. Ini bertujuan untuk mempermudah penghomogenisasi senyawa asam phospat (H3PO4) dengan gum-gum yang terdapat dalam bahan. Senyawa asam phospat
(H3PO4) yang ditambahkan secara kontinu berdosis berkisar 0,1 % dari laju
umpan CPO (Guritno, 1997). Asam phospat (H3PO4) yang digunakan umumnya
pada konsentrasi 85 % dengan BJ = 1,7 kg/ltr.(Pasifik Palmindo Industri, 2006) Campuran kedua bahan tersebut kemudian dialirkan ke filter press (H-2), untuk memisahkan fraksi padat (cake) dan fraksi cair (filtrat). Fraksi padat yang mengandung 100% impuritis dan H3PO4 serta 2 % crude olein terikut, serta fraksi
(25)
cair (filtrat) yang mengandung 98 % crude olein. Fraksi cair (filtrat) yang diperoleh akan dialirkan ke tangki reaktor (R-1) dengan menggunakan pompa hal ini bertujuan untuk mereaksikan asam lemak bebas (FFA) yang terdapat dalam crude olein dengan senyawa NaOH, sedangkan fraksi padat akan jatuh ke bak penampungan (Pasifik Palmindo Industri, 2006).
2.5.3 Proses Reaktor
Proses yang berlangsung pada unit reaktor (R-1) ini disebut juga dengan proses deasidifikasi atau proses netralisasi yaitu suatu proses untuk memisahkan asam lemak bebas (FFA) dari minyak atau lemak, dengan cara mereaksikan asam lemak bebas dengan NaOH sehingga membentuk sabun (soap stock) dan H2O
(Ketaren, 1986). Netralisasi dengan mengunakan natrium hidroksida (NaOH) lebih menguntungkan dikarenakan triglyserida tidak ikut tersabunkan, sehingga nilai refining faktor dapat diperkecil. Reaksi antara asam lemak bebas (FFA) dengan NaOH adalah sebagai berikut :
O O
R – C + NaOH R – C + H2O
OH ONa
Asam lemak bebas Sabun Air
Pada proses ini konsentrasi NaOH yang digunakan 14 % dengan jumlah yang disesuaikan dengan jumlah asam lemak bebas yang terdapat CPO (Guritno, 1997) dengan temperatur bahan dalam proses yang digunakan diturunkan kembali
(26)
dari 70oC menjadi 50oC. Untuk mendapatkan temperatur proses tersebut dibutuhkan air pendingin dengan temperatur 23oC sebanyak 3379,14 kg/jam .
Campuran kedua bahan tersebut kemudian dialirkan ke filter press (H-3), untuk memisahkan fraksi padat (cake) dan fraksi cair (filtrat). Fraksi padat yang mengandung 100% sabun serta 2 % crude olein terikut, serta fraksi cair (filtrat) yang mengandung 98 % crude olein. Fraksi cair (filtrat) yang diperoleh akan dialirkan ke tangki deodorizer (V-1) dengan menggunakan pompa hal ini bertujuan untuk memisahkan FFA yang tersisa dan air (H2O) dari crude olein agar
diperoleh crude olein atau minyak makan merah yang murni, fraksi padat akan jatuh ke bak penampungan (Pasifik Palmindo Industri, 2006).
2.5.4 Deodorisasi
Deodorisasi adalah suatu tahap proses pemurnian minyak yang bertujuan untuk menghilangkan bau dan rasa (flavor) yang tidak enak dalam minyak, dimana tahap ini dilakukan proses pemanasan yang membutuhkan temperatur 160oC, sehingga proses ini membutuhkan pemanas berupa superheated steam 200oC pada keadaan vakum (Ketaren,1986) sebanyak 622,55 kg/jam. Pada proses deodorisasi ini seyawa asam lemak bebas (FFA) dan air (H2O) yang terdapat pada
(27)
2.6 Sifat-sifat bahan 2.6.1 NaOH
a. Sifat fisika :
Warna : Putih
Berat molekul : 40 gr/mol
Titik didih (760 mmHg) : 1390 0C
Titik leleh (760 mmHg) : 318,4 0C
Viskositas : 1,103 Cp
Entropi (∆S) : 64,46 j/kmol
Kapasitas kalor (cp) : 59,54 j/kmol
Entalpi pembentukan (∆Hf)25 0C : -425,61 j/kmol
Densitas : 2,12 kg/liter
b. Sifat kimia :
Basa kuat
Larut dalam air
Sumber : www. wikipedia.org
2.6.2 H3PO4
a. Sifat Fisika :
Warna : Putih
Berat molekul : 98 g/mol
Titik didih (760 mmHg) : 158 0C
Titik leleh (760 mmHg) : 42,35 0C
Viskositas : 1,0471 Cp
Densitas : 1685 kg/m3 b. Sifat kimia :
Asam lemah
Larut dalam air
Sumber : www. wikipedia.org
(28)
BAB III NERACA MASSA
Pra Rancangan Pabrik Minyak Makan Merah direncanakan beroperasi dengan kapasitas 45000 ton/tahun selama 350 hari/tahun. Unit peralatan/instrument yang menghasilkan adanya perubahan massa pada proses produksi minyak makan merah tersebut adalah sebagai berikut :
Filter Press I (H-1)
Mixer (M-1)
Filter Press II (H-2)
Reaktor (R-1)
Filter Press III (H-3)
Deodorizer (V-1)
Setelah dilakukan perhitungan berdasarkan basis 1 jam operasi pada Lampiran A, maka didapat hasil perhitungan neraca massa pada Tabel 3.1 s/d Tabel 3.6 di bawah ini :
(29)
Tabel 3.1 Hasil perhitungan neraca massa pada Filter Press I (H-1)
Masuk Keluar (kg/jam)
Komponen
Alur 2 Alur 3 Alur 4
Miristin 94,5161 80,3387 14,1774
Palmitin 5521,1217 4692,9534 828,1683
Stearin 428,7802 364,4632 64,3170
Olein 4291,2601 643,689 3647,5711
Linolein 1171,0772 175,6616 995,4156
Linolenin 19,5948 2,9392 16,6556
Karoten 8,4931 0,4247 8,0684
Tokoferol 3,6399 0,1819 3,4579
FFA 424,655 0,2548 424,4002
Gums 157,729 97,0033 60,7257
H2O 10,9197 - 10,9197
Impuritis 1,2133 - 1,2133
6057,9098 6075,0902 Total 12133
12133
(30)
Tabel 3.2 Hasil perhitungan neraca massa pada Mixer (M-1)
Masuk (kg/jam) Keluar (kg/jam) Komponen
Alur 4 Alur 5 Alur 6
Miristin 14,1774 - 14,1774
Palmitin 828,1683 - 828,1683
Stearin 64,3170 - 64,3170
Olein 3647,5711 - 3647,5711
Linolein 995,4156 - 995,4156
Linolenin 16,6556 - 16,6556
Karoten 8,0684 - 8,0684
Tokoferol 3,4579 - 3,4579
FFA 424,4002 - 424,4002
Gums 60,7257 - 60,7257
H2O 10,9197 1,8199 12,7396
Impuritis 1,2133 - 1,2133
H3PO4 - 10,3131 10,3131
6075,0902 12,133 Total
6087,2232
(31)
Tabel 3.3 Hasil perhitungan neraca massa pada Filter Press II (H-2) Masuk (kg/jam) Keluar (kg/jam) Komponen
Alur 6 Alur 7 Alur 8
Miristin 14,1774 0,2835 13,8939
Palmitin 828,1683 16,5634 811,6049
Stearin 64,3170 1,2863 63,0307
Olein 3647,5711 72,9514 3574,6197
Linolein 995,4156 19,9083 975,5073
Linolenin 16,6556 0,3331 16,3225
Karoten 8,0684 0,1614 7,9070
Tokoferol 3,4579 0,0692 3,3887
FFA 424,4002 8,4880 415,9122
Gums 60,7257 60,7257 -
H2O 12,7396 0,2548 12,4848
Impuritis 1,2133 1,2133 -
H3PO4 10,3131 10,3131 -
192,5515 5894,6717 Total 6087,2232
6087,2232
(32)
Tabel 3.4 Hasil perhitungan neraca massa pada Reaktor (R-1)
Masuk (kg/jam) Keluar (kg/jam) Komponen
Alur 8 Alur 9 Alur 10
Miristin 13,8939 - 13,8939
Palmitin 811,6049 - 811,6049
Stearin 63,0307 - 63,0307
Olein 3574,6197 - 3574,6197
Linolein 975,5073 - 975,5073
Linolenin 16,3225 - 16,3225
Karoten 7,9070 - 7,9070
Tokoferol 3,3887 - 3,3887
FFA 415,9122 - 143,6967
H2O 12,4848 260,8595 292,4531
NaOH - 42,4655 -
Sabun - - 295,5707
5894,6717 303,325 Total
6197,9952
(33)
Tabel 3.5 Hasil perhitungan neraca massa pada Filter Press III (H-3) Masuk (kg/jam) Keluar (kg/jam) Komponen
Alur 10 Alur 11 Alur 12
Miristin 13,8939 0,2779 13,6161
Palmitin 811,6049 16,2321 795,3728
Stearin 63,0307 1,2606 61,7701
Olein 3574,6197 71,4924 3503,1273
Linolein 975,5073 19,5102 955,9971
Linolenin 16,3225 0,3265 15,9960
Karoten 7,9070 0,1581 7,7489
Tokoferol 3,3887 0,0678 3,3209
FFA 143,6967 2,8739 140,8228
H2O 292,4531 5,8491 286,6040
Sabun 295,5707 295,5707 -
413,6192 5784,376 Total 6197,9952
6197,9952
(34)
Tabel 3.6 Hasil perhitungan neraca massa pada Deodorizer (V-1) Masuk (kg/jam) Keluar (kg/jam) Komponen
Alur 12 Alur 13 Alur 14
Miristin 13,6161 - 13,6161
Palmitin 795,3728 - 795,3728
Stearin 61,7701 - 61,7701
Olein 3503,1273 - 3503,1273
Linolein 955,9971 - 955,9971
Linolenin 15,9960 - 15,9960
Karoten 7,7489 - 7,7489
Tokoferol 3,3209 - 3,3209
FFA 140,8228 140,8228 -
H2O 286,6040 286,6040 -
427,4268 5356,9492 Total 5784,376
(35)
BAB IV NERACA PANAS
Pra Rancangan Pabrik Minyak Makan Merah direncanakan beroperasi dengan kapasitas 45000 ton/tahun selama 350 hari/jam. Unit peralatan/instrument proses yang membutuhkan energi panas dalam menjalankan proses untuk memproduksi minyak makan merah tersebut adalah sebagai berikut :
Tangki Penyimpanan CPO (F-1)
Kristaliser (P-1)
Mixer (M-1)
Reaktor (R-1)
Deodorizer (V-1)
Cooler (E-1)
Setelah dilakukan perhitungan berdasarkan basis 1 jam operasi dengan atemperatur reference 250C dengan satuan operasi kJ/jam pada Lampiran B, maka dapat dilihat hasil perhitungan neraca panas pada Tabel 4.1 s/d Tabel 4.6 di bawah ini :
Tabel 4.1 Neraca Panas pada Tangki Penyimpan (F-1)
Energi Panas (kJ/jam) Senyawa
Masuk Keluar
CPO - 607603,93
QSerap 607603,93 -
Total 607603,93 607603,93
(36)
Tabel 4.2 Neraca Panas pada Kristaliser (P-1)
Energi Panas (kJ/jam)
Tahap Cooling Tahap Chilling
Senyawa
Masuk Keluar Masuk Keluar
CPO 607603,93 -48608,31 -48608,31 -315954,04
Qserap tahap cooling -656212,24 - - -
Qserap tahap chilling - - -267345,73 -
Total -48608,31 -48608,31 -315954,04 -315954,04
Tabel 4.3 Neraca Panas pada Mixer (M-1)
Energi Panas (kJ/jam) Senyawa
Masuk Keluar Miristin -394,99 1367,26 Palmitin -23098,01 79954,65
Stearin -1794,69 6212,37
Olein -106872,89 369944,61
Linolein -41323,35 143042,35
Linolenin -593,44 2054,21 Karoten -191,61 663,27 Tokoferol -91,80 317,78
FFA -11536,83 39935,18
Gums -1574,68 5450,80
H2O -593,27 2395,97
Impuritis -35,05 121,32
H3PO4 0 502,59
QSteam 840062,97 -
(37)
Tabel 4.4 Neraca Panas pada Reaktor (R-1)
Energi Panas (kJ/jam) Senyawa
Masuk Keluar Miristin 1339,36 774,09 Palmitin 78356,49 43531,38
Stearin 6091,75 3384,30
Olein 337929,13 187738,40
Linolein 140185,80 77881 Linolenin 2011,19 1117,33
Karoten 646,99 359,44 Tokoferol 313,81 174,34
FFA 39135,72 7512,53
H2O 2348,18 30559,96
Sabun - 15415,49
NaOH 0 -
QReaksi 268,88 -
QSerap -240179,04 -
Total 368448,26 368448,26
(38)
Tabel 4.5 Neraca Panas pada Deodorizer (V-1)
Energi Panas (kJ/jam) Senyawa
Masuk Keluar Miristin 728,58 3934,36
Palmitin 42656,51 230345,16
Stearin 3317,29 17913,35
Olein 183984,85 1000375,04
Linolein 76322,12 412139,44
Linolenin 1093,43 5904,49 Karoten 352,66 1904,37 Tokoferol 169,92 858,00
FFA 7362,14 39755,56
H2O 29948,74 161722,17
QSteam 1528915,7 -
(39)
Tabel 4.6 Neraca Panas pada Cooler (E-1)
Energi Panas (kJ/jam) Senyawa
Masuk Keluar
Miristin 3934,36 -
Palmitin 230345,16 - Stearin 17913,35
- Olein 1000375,04
- Linolein 412139,44
- Linolenin 5904,49
- Karoten 1904,37
- Tokoferol 858,00
-
QSerap - 1673374,21
Total 1673374,21 1673374,21
(40)
BAB V
SPESIFIKASI PERALATAN
Dari hasil perhitungan peralatan pada Lampiran C, maka dibuatlah data spesifikasi peralatan yang digunakan pada Pra-rancangan Pabrik Pembuatan Minyak Makan Merah dari CPO sebagai berikut :
5.1 Tangki Penyimpanan CPO (F-1)
Fungsi : Untuk menampung CPO sebagai bahan baku
selama 7 hari.
Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 500C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 2587,74 m3 Diameter tangki : 13 m Tinggi silinder : 19,5 m Tinggi tangki : 19,5 m Pdesain : 16,34 psi
Tebal silinder : 0,34 in Tebal head standar : 0,34 in
Koil : - Bahan konstruksi : stainless steel
- Type : Tube 4 in sch 40 - Jumlah belitan : 22 belitan
5.2 Pompa (L-1)
Fungsi : Mengalirkan CPO dari tangki penyimpan (F-1) ke
(41)
Jenis : Pompa sentrifugal Jumlah : 1 unit
Spesifikasi :
- Debit pompa : 0,13 ft3/s - Diameter pompa : 9,27 in - Schedule number : 60 - Kecepatan alir : 0,25 ft/s - Total friksi : 0,02 ft.lbf/lbm - Kerja poros : 6,04 ft.lbf/lbm - Daya pompa : 1/2 hp
- Bahan konstruksi : Commercial steel
5.3 Kristalizer (P-1)
Fungsi : Untuk mengkristalkan miristin, palmitin dan stearin yang keluar dari tangki penyimpanan CPO (F-1)
Jenis : Silinder vertikal dengan alas dan tutup ellipsoidal
Bahan konstruksi : Stainless steel, SA-240, Grade A dan type 410
Kondisi operasi : T = 12oC ; P = 1 atm
Jumlah : 5 unit
Kapasitas tangki : 15,41m3 Diameter tangki : 2,5 m Tinggi silinder : 3,13 m Tinggi tangki : 3,13 m Pdesain : 16,19 psi
Tebal silinder : 0,1 in Tebal head standar : 0,1 in
Pengaduk : - Jenis pengaduk : Propeler dengan 3 daun - Diameter pengaduk : 2,7 ft
- Kecepatan pengaduk : 0,25 rps - Daya pengaduk : 1/20 hp
Koil : a. Tahap cooling
(42)
- Bahan konstruksi : stainless steel
- Type : Tube 24 in sch 20 - Jumlah belitan : 6 belitan
b. Tahap chilling
- Bahan konstruksi : stainless steel
- Type : Tube 24 in sch 20 - Jumlah belitan : 25 belitan
5.4 Pompa (L-2)
Fungsi : Mengalirkan CPO dari Kristalizer (P-1) ke Filter Press
(H-1)
Jenis : Pompa sentrifugal
Jumlah : 5 unit Spesifikasi :
- Debit pompa : 0,13 ft3/s - Diameter pompa : 9,44 in - Schedule number : 60 - Kecepatan alir : 0,25 ft/s - Total friksi : 0,03 ft.lbf/lbm - Kerja poros : 6,02 ft.lbf/lbm - Daya pompa : 1/8 hp
- Bahan konstruksi : Commercial steel
5.5 Filter Press I (H-1)
Fungsi : Untuk memisahkan fraksi padatan dan fraksi cairan yang keluar dari Kristaliser (P-1)
Jenis : Plate and frame filter
Bahan konstruksi : Stainless steel
Bahan filter media : Kanvas
Jumlah : 1 unit
(43)
Luas plate : 170,93 m2 Jumlah plate : 171 buah
5.6 Pompa (L-3)
Fungsi : Mengalirkan crude olein dari Filter Press I (H-1) ke tangki Mixer (M-1)
Jenis : Pompa sentrifugal
Jumlah : 1 unit Spesifikasi :
- Debit pompa : 0,06 ft3/s - Diameter pompa : 7,56 in - Schedule number : 80 - Kecepatan alir : 0,19 ft/s - Total friksi : 0,03 ft.lbf/lbm - Kerja poros : 6,06 ft.lbf/lbm - Daya pompa : 1/8 hp
- Bahan konstruksi : Commercial steel
5.7 Bak Penampung Fraksi Padat/Cake (F-2)
Fungsi : Untuk menampung fraksi padat/cake dari Filter Press I (H-1).
Jenis : Bak penampung sementara
Bahan konstruksi : Beton
Kondisi operasi : T = 25oC ; P = 1 atm
Jumlah : 1 unit
Kapasitas bak : 4,62 m3 Lebar bak : 1,45 m Tingggi bak : 1,45 m Panjang bak : 2,18 m
(44)
5.8 Screw Conveyor I (J-1)
Fungsi : Alat transportasi fraksi padat/cake dari bak penampung (F-2) ke tangki penampung (F-3). Jenis : Horizontal screw conveyor class II-X
Bahan konstruksi : Carbon steel
Jumlah : 1 unit
Kapasitas : 7,37 ton/jam
Diameter tingkat : 10 in
Diameter pipa : 2 ½ in
Pusat gantungan : 10 ft Kecepatan motor : 55 rpm Diameter bagian umpan : 9 in Panjang maksimum : 45 ft
Daya motor : 2,25 hp
5.9 Tangki Penampung Fraksi Padat/Cake (F-3)
Fungsi : Untuk menampung fraksi padat/cake dari bak penampungan sementara (F-2) melalui Screw Conveyor (J-1).
Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 250C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 776,14 m3 Diameter tangki : 8,7 m Tinggi silinder : 13,05 m Tinggi tangki : 13,05 m Pdesain : 16,37 psi
Tebal silinder : 0,25 in Tebal head standar : 0,25 in
(45)
5.10 Tangki Penyimpanan H3PO4 (F-4)
Fungsi : Untuk menampung H3PO4 85 % selama 7 hari.
Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 250C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 28,86 m3 Diameter tangki : 2,9 m Tinggi silinder : 4,35 m Tinggi tangki : 4,35 m Pdesain : 16,24 psi
Tebal silinder : 0,11 in Tebal head standar : 0,11 in
5.11 Pompa (L-4)
Fungsi : Mengalirkan H3PO4 dari tangki penyimpan (F-4) ke
tangki Mixer (M-1) Jenis : Pompa sentrifugal Jumlah : 1 unit
Spesifikasi :
- Debit pompa : 7,03 x10-5 ft3/s - Diameter pompa : 0,3 in
- Schedule number : 80 - Kecepatan alir : 0,14 ft/s - Total friksi : 0,1 ft.lbf/lbm - Kerja poros : 6,2 ft.lbf/lbm - Daya pompa : 1/20 hp
- Bahan konstruksi : Commercial steel
(46)
5.12 Mixer (M-1)
Fungsi : Untuk mencampur crude olein (fraksi cair) dengan H3PO4 85 %.
Jenis : Silinder vertikal dengan alas dan tutup ellipsoidal. Bahan konstruksi : Stainless steel, SA-240, Grade A dan type 410
Kondisi operasi : T = 70oC ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 6,94 m3 Diameter tangki : 1,81 m Tinggi silinder : 2,72 m Tinggi tangki : 2,72 m Pdesain : 16,19 psi
Tebal silinder : 0,084 in Tebal head stand. : 0,084 in
Pengaduk : - Jenis pengaduk : paddle dengan 2 daun (blades) - Diameter pengaduk : 1,98 ft
- Kecepatan pengaduk : 1 rps - Daya pengaduk : 1/8 hp
Koil : - Bahan konstruksi : stainless steel
- Type : Tube 10 in sch 40 - Jumlah belitan : 6 belitan
5.13 Pompa (L-5)
Fungsi : Mengalirkan crude olein dari tangki Mixer (M-1) ke
Filter press II (H-2). Jenis : Pompa sentrifugal Jumlah : 1 unit
Spesifikasi :
- Debit pompa : 0,057 ft3/s - Diameter pompa : 6,79 in - Schedule number : 80
(47)
- Kecepatan alir : 0,18 ft/s
- Total friksi : 0,014 ft.lbf/lbm - Kerja poros : 6,03 ft.lbf/lbm - Daya pompa : 1/8 hp
- Bahan konstruksi : Commercial steel
5.14 Filter Press II (H-2)
Fungsi : Untuk memisahkan fraksi padatan (impuritis & Gums) dan fraksi cairan (crude olein) yang keluar dari tangki Mixer (M-1)
Jenis : Plate and frame filter
Bahan konstruksi : Stainless steel
Bahan filter media : Kanvas
Jumlah : 1 unit
Porositas cake : 0,08 Luas plate : 3,49 m2 Jumlah plate : 4 buah
5.15 Pompa (L-6)
Fungsi : Mengalirkan filtrat yang merupakan crude olein murni hasil dari Filter Press II (H-2) ke tangki Reaktor (R-1) Jenis : Pompa sentrifugal
Jumlah : 1 unit Spesifikasi :
- Debit pompa : 0,05 ft3/s - Diameter pompa : 6,59 in - Schedule number : 80 - Kecepatan alir : 0,16 ft/s
- Total friksi : 0,015 ft.lbf/lbm - Kerja poros : 6,03 ft.lbf/lbm
(48)
- Daya pompa : 1/8 hp
- Bahan konstruksi : Commercial steel
5.16 Bak Penampungan Fraksi Padat/Cake (F-5)
Fungsi : Untuk menampung fraksi padat/cake dari Filter Press II (H-2).
Jenis : Bak penampung sementara
Bahan konstruksi : Beton
Kondisi operasi : T = 25oC ; P = 1 atm
Jumlah : 1 unit
Kapasitas bak : 0,2 m3 Lebar bak : 0,5 m Tingggi bak : 0,5 m Panjang bak : 0,75 m
5.17 Screw Conveyor II (J-2)
Fungsi : Alat transportasi fraksi padat/cake dari bak penampung (F-5) ke tangki penampung (F-6). Jenis : Horizontal screw conveyor class II-X
Bahan konstruksi : Carbon steel
Jumlah : 1 unit
Kapasitas : 0,23 ton/jam Diameter tingkat : 9 in
Diameter pipa : 2 ½ in Pusat gantungan : 10 ft Kecepatan motor : 40 rpm Diameter bagian umpan : 6 in Panjang maksimum : 15 ft
(49)
5.18 Tangki Penampungan Fraksi Padat/Cake (F-6)
Fungsi : Untuk menampung fraksi padat/cake dari bak penampung sementara (F-5) melalui Screw Conveyor II (J-2).
Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 250C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 34,14 m3 Diameter tangki : 3,07 m Tinggi silinder : 4,6 m Tinggi tangki : 4,6 m Pdesain : 16,21 psi
Tebal silinder : 0,11 in Tebal head standar : 0,11 in
5.19 Tangki Penyimpanan NaOH (F-7)
Fungsi : Untuk menampung NaOH 14 % selama 7 hari. Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 250C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 28,85 m3 Diameter tangki : 2,9 m Tinggi silinder : 4,35 m Tinggi tangki : 4,35 m Pdesain : 16,26 psi
Tebal silinder : 0,11 in Tebal head standar : 0,11 in
(50)
5.20 Pompa (L-7)
Fungsi : Mengalirkan NaOH 14 % dari tangki penyimpanan NaOH (F-7) ke tangki Reaktor (R-1)
Jenis : Pompa sentrifugal Jumlah : 1 unit
Spesifikasi :
- Debit pompa : 0,0014 ft3/s - Diameter pompa : 0,91 in - Schedule number : 80 - Kecepatan alir : 0,29 ft/s - Total friksi : 0,05 ft.lbf/lbm - Kerja poros : 6,1 ft.lbf/lbm - Daya pompa : 1/20 hp
- Bahan konstruksi : Commercial steel
5.21 Reaktor (R-1)
Fungsi : Tempat berlangsungnya reaksi antara FFA dan NaOH guna menghasilkan sabun dan air.
Jenis : Reaktor berpengaduk marine propeller tiga daun dengan tutup dan alas ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A dan type 410
Kondisi operasi : T = 50oC ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 7,04 m3 Diameter tangki : 1,75 m Tinggi silinder : 2,63 m Tinggi tangki : 3,07 m Pdesain : 16,2 psi
Tebal silinder : 0,082 in Tebal head stand. : 0,082 in
(51)
Pengaduk : - Jenis pengaduk : marine propeller 3 daun - Diameter pengaduk : 1,91 ft
- Kecepatan pengaduk : 1 rps - Daya pengaduk : 1/2 hp
Koil : - Bahan konstruksi : stainless steel
- Type : Tube 10 in sch 40 - Jumlah belitan : 8 belitan
5.22 Pompa (L-8)
Fungsi : Memompa larutan dari Reaktor (R-1) ke Filter Press
III (H-3).
Jenis : Pompa sentrifugal
Jumlah : 1 unit Spesifikasi :
- Debit pompa : 0,058 ft3/s - Diameter pompa : 6,89 in - Schedule number : 80 - Kecepatan alir : 0,18 ft/s
- Total friksi : 0,015 ft.lbf/lbm - Kerja poros : 6,03 ft.lbf/lbm - Daya pompa : 1/8 hp
- Bahan konstruksi : Commercial steel
5.23 Filter Press III (H-3)
Fungsi : Untuk memisahkan fraksi padatan (sabun) dan fraksi cairan (crude olein) yang keluar dari Reaktor (R-1). Jenis : Plate and frame filter
Bahan konstruksi : Stainless steel
Bahan filter media : Kanvas
Jumlah : 1 unit
(52)
Porositas cake : 0,07 Luas plate : 8,54 m2 Jumlah plate : 9 buah
5.24 Pompa (L-9)
Fungsi : Memompa filtrat yang merupakan crude olein murni yang diperoleh dari Filter Press III (H-3) ke tangki
Deodorizer (V-1)
Jenis : Pompa sentrifugal
Jumlah : 1 unit Spesifikasi :
- Debit pompa : 0,05 ft3/s - Diameter pompa : 6,51 in - Schedule number : 80 - Kecepatan alir : 0,16 ft/s
- Total friksi : 0,013 ft.lbf/lbm - Kerja poros : 6,03 ft.lbf/lbm - Daya pompa : 1/8 hp
- Bahan konstruksi : Commercial steel
5.25 Bak Penampung Fraksi Padat/Cake (F-8)
Fungsi : Untuk menampung fraksi padat/cake dari Filter Press III (H-3) berupa sabun.
Jenis : Bak penampung sementara
Bahan konstruksi : Beton
Kondisi operasi : T = 25oC ; P = 1 atm
Jumlah : 1 unit
Kapasitas bak : 0,28 m3 Lebar bak : 0,57 m Tingggi bak : 0,57 m
(53)
Panjang bak : 0,86 m
5.26 Screw Conveyor III (J-3)
Fungsi : Alat transportasi fraksi padat/cake dari bak penampung (F-5) ke tangki penampung (F-6). Jenis : Horizontal screw conveyor class II-X
Bahan konstruksi : Carbon steel
Jumlah : 1 unit
Kapasitas : 0,496 ton/jam Diameter tingkat : 9 in
Diameter pipa : 2 ½ in Pusat gantungan : 10 ft Kecepatan motor : 40 rpm Diameter bagian umpan : 6 in Panjang maksimum : 15 ft
Daya motor : 0,43 hp
5.27 Tangki Penampung Fraksi Padat/Cake (F-9)
Fungsi : Untuk menampung fraksi padat/cake berupa sabun dari bak penampung sementara (F-8) melalui Screw Conveyor III (J-3).
Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 250C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 45,9 m3 Diameter tangki : 3,39 m Tinggi silinder : 5,09 m Tinggi tangki : 5,09 m Pdesain : 16,26 psi
(54)
Tebal silinder : 0,12 in Tebal head standar : 0,12 in
5.28 Deodorizer (V-1)
Fungsi : Untuk memisahkan FFA dan H2O dari crude olein.
Jenis : Silinder vertikal dengan tutup dan alas ellipsoidal Bahan konstruksi : Stainless steel, SA-240, Grade A dan type 410
Kondisi operasi : T = 160oC ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 6,56 m3 Diameter tangki : 2,23 m Tinggi silinder : 4,46 m Tinggi tangki : 5,02 m Pdesain : 16,21 psi
Tebal silinder : 0,094 in Tebal head stand. : 0,094 in
Koil : - Bahan konstruksi : stainless steel
- Type : Tube 12 in sch 30 - Jumlah belitan : 15 belitan
5.29 Pompa (L-10)
Fungsi : Mengalirkan crude olein murni (minyak makan merah) dari Deodorizer (V-1) ke Cooler (E-1)
Jenis : Pompa sentrifugal
Jumlah : 1 unit Spesifikasi :
- Debit pompa : 0,05 ft3/s - Diameter pompa : 4,04 in - Schedule number : 80 - Kecepatan alir : 0,28 ft/s
(55)
- Kerja poros : 4,05 ft.lbf/lbm - Daya pompa : 1/8 hp
- Bahan konstruksi : Commercial steel
5.30 Cooler (E-1)
Fungsi : Menurunkan temperatur minyak makan merah yang keluar dari Deodorizer (V-1) dengan temperatur 160oC menjadi 25oC.
Jenis : 2-4 Shell and Tube Heat Exchanger
Jumlah : 1 unit
Jenis tube : 11 BMG
Diameter dalam, ID : 0,76 in Diameter luar, OD : 1 in Panjang tube : 9 ft
Jumlah tube : 98 ft
Faktor pengotor : 0,05
5.31 Pompa (L-11)
Fungsi : Mengalirkan minyak makan merah dari Cooler (E-1) ke Tangki Penyimpanan Minyak Makan Merah (F-10)
Jenis : Pompa sentrifugal
Jumlah : 1 unit Spesifikasi :
- Debit pompa : 0,05 ft3/s - Diameter pompa : 6,97 in - Schedule number : 80
- Kecepatan alir : 0,1575 ft/s - Total friksi : 0,019 ft.lbf/lbm - Kerja poros : 6,04 ft.lbf/lbm - Daya pompa : 1/8 hp
(56)
- Bahan konstruksi : Commercial steel
5.32 Tangki Penyimpanan Minyak Makan Merah/Produk (F-10)
Fungsi : Untuk menampung Minyak Makan Merah selama
7 hari.
Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 250C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 1011,47 m3 Diameter tangki : 9,51 m Tinggi silinder : 14,27 m Tinggi tangki : 14,27 m Pdesain : 16,31 psi
Tebal silinder : 0,26 in Tebal head standar : 0,26 in
5.33 Kondensor (K-1)
Fungsi : Mengkondensasikan uap H2O dan FFA
Deodorizer (V-1).
Jenis : Double pipe exchanger
Digunakan : Double pipe hairpins 20 ft, diameter 4 x 3 inc IPS
Jumlah : 1 unit
Luas permukaan : 293,44 ft2
Panjang : 297,37 ft
Jumlah hairpin : 8 buah Faktor pengotor : 0,011
(57)
5.34 Tangki Penyimpanan H2O dan FFA (F-11 )
Fungsi : Untuk menampung Minyak Makan Merah selama
7 hari.
Jenis : Silinder vertikal dengan alas datar dan tutup
ellipsoidal.
Bahan konstruksi : Stainless steel, SA-240, Grade A, Type 410
Kondisi penyimpanan : T = 250C ; P = 1 atm
Jumlah : 1 unit
Kapasitas tangki : 101,53 m3 Diameter tangki : 4,42 m Tinggi silinder : 6,63 m Tinggi tangki : 6,63 m Pdesain : 16,21 psi
Tebal silinder : 0,14 in Tebal head standar : 0,14 in
(58)
BAB VI
INSTRUMENTASI DAN KESELAMATAN KERJA
6.1. Instrumentasi
Intrumentasi adalah suatu alat yang di pakai didalam suatu proses kontrol untuk mengatur jalannya proses agar diperoleh hasil sesuai dengan yang di harapkan. Dalam suatu pabrik kimia, pemakaian instrumen merupakan suatu hal yang sangat penting karena dengan adanya rangkaian instrumen tersebut maka operasi semua peralatan yang ada di dalam pabrik dapat dimonitor dan di kontrol dengan cermat, mudah dan efisien, sehingga kondisi operasi selalu berada dalam kondisi yang diharapkan. Namun pada dasarnya, tujuan pengendalian tesebut adalah agar kondisi proses dipabrik mencapai tingkatan yang paling minimum sehingga produk dapat dihasilkan secara optimal (Perry, 1999).
Fungsi instrumen adalah sebagai pengontrol penunjuk (indicator), pencatat (recoder), dan pemberi tanda bahaya (alarm). Instrumen bekerja dengan tenaga mekanik atau tenaga listrik dan pengontrolannya dapat dilakukan secara manual atau otomatis. Instrumen digunakan dalam industri kimia untuk mengukur variabel- variabel proses seperti temperatur, tekanan, densitus, viskositas, pabas spesifik, kondukrivitas, pH, kelembamam, titik embun, tinggi cairan, laju alir, komposisi dan moisture content. Intrumen-intrumen tersebut mempunyai tingkat batasan operasi sesuai dengan kebutuhan pengolahan (Timmerhaus,2004).
Variabel-variabel proses yang biasanya dikontrol / diukur oleh instrumen adalah (Considine, 1985) I :
(59)
1. Variabel utama, seperti temperatur, tekanan, laju alir, dan level cairan.
2. Variabel tambahan seperti densitas, viskasitas, panas spesifik, konduktivitas, pH, humiditas, titik embun, komposisi kimia, kandungan kelembapan di variabel lainnya.
Secara umum, kerja dari alat-alat instrumentasi dapat dibagi dua bagian yaitu operasi secara manual dan operasi secara otomatis. Penggunaan instrumen pada suatu peralatan proses bergantung pada pertimbangan ekonomis dan sistem peralatan itu sendiri. Pada pemakaian alat-alat instrumentasi juga harus ditentukan apakah alat-alat itu dapat dipasang pada peralatan proses (manual control) atau disatukan dalam suatu ruang kontrol yang dihubungkan dengan bagian peralatan (automatic control). (Perry, 1999)
Menurut sifatnya konsep dasar pengendalian proses ada dua jenis, yaitu :
Pengendalian secara manual
Tindakan pengendalian yang dilakukan oleh manusia. Sistem pengedalian ini merupakan sistem yang ekonomis karena tidak membutuhkan begitu banyak instrumentasi dan instalasinya. Namun pengendalian ini berpotensi tidak praktis dan tidak aman karena sebagai pengendalinya adalah manusia yang tidak lepas dari kesalahan.
Pengendalian secara otomatis
Berbeda dengan pengedalian secara manual, pengendalian secara otomatis menggunakan instrumentasi sebagai pengendali proses, namun manusia masih terliabat sebagai otak pengendali. Banyak pekerjaan manusia dalam
(60)
pengedalian secara manual diambil alih oleh instrumentasi sehingga membuat sistem pengendali ini sangat praktis dan menguntungkan.
Hal-hal yang diharapkan dalam pemakaian alat-alat instrumentasi adalah : a. Kualitas produk dapat diperolehsesuai dengan yang diinginkan
b. Pengoperasiaan sistem peralatan yang lebih mudah c. Sistem kerja lebih efisien
d. Penyimpangan yang mungkin terjadi dapat diketahui dengan cepat
Faktor-faktor yang perlu diperhatikan dalam instrumentasi adalah (Timmerhaus, 2004):
1. Range yang diperlukan untuk pengukuran 2. Level instrumentasi
3. Ketelitian yang dibutuhkan 4. Bahan konstruksinya
5. Pengaruh pemasangan instrumentasi pada kondisi proses
6.1.1. Tujuan Pengendali
Tujuan perancangan sistem pengendali dari pabrik pembuatan pelumas padat (grease) dari minyak sawit adalah sebagai keamanan operasi pabrik yang mencakup :
Mempertahankan variabel-variabel proses seperti temperatur dan tekanan tetap berada dalam rentang operasi yang aman dengan harga toleransi yang kecil.
(61)
Medeteksi situasi berbahaya kemungkinan terjadinya kebocoran alat. Pendeteksian dilakukan dan menyediakan alarm dan sistim penghentian operasi secara otomatis.
Mengontrol setiap penyimpanan operasi agar tidak terjadi kecelakaan kerja maupun kerusakan pada alat proses.
6.1.2. Jenis-jenis Pengendalian dan Alat Pengendali
Sistim pengendalian yang digunakan pada pabrik ini menggunakan dan mengkombinasikan beberapa tipe pengendalian sesuai dan tujuan dan keperluannya :
1. Feedback Control
Perubahan pada sistim diukur (setelah adanya gangguan), hasil pengukuran dibandingkan dengan set point, hasil perbandingan digunakan untuk mengendalikan variabel yang dimanipulasi.
2. Feedforward control
Besarnya gangguan diukur (sensor pada point), hasil pengukuran digunakan untuk mengendalikan variabel yang dimanipulasi.
3. Adaptive control
Sistim pengendali yang dapat menyesuaikan parameternya secara otomatis sedemikian rupa untuk mengatasi perubahan yang terjadi dalam proses yang dikendalikannya, umumnya ditandai dengan adanya reset input pada controller.
(62)
4. Infevential control
Sering kali variabel yang ingin dikendalikan tidak dapat diukur secara langsung sebagai solusinya digunakan sistim pengendalian dimana variabel yang terukur digunakan untuk mengestimasi variabel yang akan dikendalikan, variabel terukur dan variabel tak terukur tersebut dihubungkan dan suatu persamaan matematika.
Pengendali yang banyak digunakan adalah jenis feedback (umpan balik) berdasarkan pertimbangan kemudahan pengendalian.
Pada dasarnya sistim pengendalian terdiri dari (Considine,1985): a. Elemen Primer
Elemen primer berfungsi untuk menunjukkan kualitas suatu variabel proses dan menerjemahkan nilai itu dalam bentuk sinyal dan menggunakan transducer sebagai sensor. Ada banyak sensor yang digunakan bersambung variabel proses yang ada:
Sensor untuk temperatur yaitu bimetal,thermocouple, dll.
Sensor untuk tekanan yaitu diafragma,cincin keseimbangan, dll
Sensor untuk level yaitu pelampung, elemen radio aktif, dll
Sensor untuk aliran atau flow yaitu orifice, nozzle, dll b. Elemen Pengukuran
Elemen pengukuran berfungsi mengonversikan segala perubahan nilai yang dihasilkan elemen primer yang berupa sinyal kedalam sebuah harga pengukuran yang dikirimkan transmitter ke elemen pengendali.
(63)
Tipe ini menggunakan prisip perbedaan kapasitansi
Tipe smart
Tipe smart menggunakan microprocessor elektronik sebagai
pemroses sinyal.
c. Elemen Pengedali
Elemen pengendali berfungsi menerima sinyal dari elemen pengukur yang kemudian di bandingkan dengan set point di dalam pengendali. Hasilnya berupa sinyal koreksi yang akan dikirim ke elemen pengendali menggunakan processor (computer, microprocessor) sebagai pemproses sinyal pengendali. Jenis elemen pengendali yang digunakan tergantung pada variabel prosesnya. Untuk variabel proses yang lain misalnya :
a. Temperatur menggunakan Temperature Controller (TC) b. Tekanan menggunakan Pressure Controller (PC)
c. Aliran/flow menggunakan Flow Controller (FC) d. Level menggunakan Level Controller (LC) d. Elemen Pengendali Akhir
Elemen pengendali akhir berperan mengonversikan sinyal yang di terimanya menjadi sebuah tindakan korektif terhadap proses. Umumnya industri menggunakan control valve dan pompa sebagai elemen pengendali akhir. 1. Control Valve
Control valve mempunyai tiga elemen penyusun yaitu:
Positioner yang berfungsi untuk mengatur posisi actuator
Actuator valve berfungsi mengaktualisasikan sinyal pengendali (valve)
(64)
Valve, merupakan elemen pengendali proses. Ada banyak tipe valve
berdasarkan bentuknya seperti butterfly valve, valve bola, valve
segmen. 2. Pompa Listrik
Elemen pompa terdiri dari dua bagian yaitu:
Actuator Pompa
Sebagai Aktuator pompa adalah motor listrik. Motor listrik mengubah tenaga listrik menjadi tenaga mekanik. Prinsip kerjanya berdasarkan induksi elektromagnetik yang menggerakkan motor.
Pompa Listrik berfungsi memindahkan/menggerakkan fluida baik itu zat cair, gas dan padat.
Secara garis besar fungsi instrumentasi adalah sebagai berikut: 1. Penunjuk(indicator)
2. Pencatat (recorder) 3. Pengontrol (regulator)
4. Pemberi tanda bahaya (alarm)
Adapun instrumentasi yang digunakan dipabrik pelumas padat (grease) ini mencakup:
1. Temperature Controller ( TC)
Adalah alat/ instrumen yang digunakan sebagai alat pengatur suhu atau pengukur sinyal mekanis atau listrik. Pengaturan termperatur dilakukan dengan mengatur jumlah material proses yang harus ditambahkan/dikeluarkan dari dalam suatu proses yang sedang bekerja.
(65)
2 Pressure Controller (PC)
Adalah alat/ instrumen yang dapat digunakan sebagai alat pengatur tekanan atau pengukur tekanan atau pengubah sinyal manjadi sinyal makanis.
3. Flow Controller (FC)
Adalah alat/ instrumen yang bisa digunakan untuk mengatur kecepatan aliran fluida dalam pipa line atau unit proses lainnya. Pengukuran kecepatan aliran fluida dalam pipa biasanya diatur dengan mengukur output dari alat, yang mengakibatkan fluida mengalir dalam pipa line.
4. Level Controller ( LC)
Adalah alat/ instrumen yang dipakai untuk mengukur ketinggian (level) cairan dalam suatu alat dimana cairan tersebut bekerja. Pengukuran tinggi permukaan cairan dilakukan dengan operasi dari sebuah control valve, yaitu mengatur rate cairan masuk atau keluar proses .
Prinsip kerja :
Jumlah aliran fluida diatur oleh control valve. Kemudian rate fluida melalui valve ini akan memberikan sinyal kapada LC untuk mendeteksi tinggi permukaan pada set point.
Alat sensing yang digunakan umumnya pelampung atau transduser diafragma untuk mendeteksi dan menunjukkan tinggi permukaan cairan dalam alat di mana cairan bekerja.
Proses pengendalian pada pabrik ini menggunakan feedback control configuration karena selain nbiasanya relative lebih murah, pengaturan sistem pengendaliannya menjadi lebih sederhana. Konfigurasi ini mengukur secara
(66)
langsung variable yang ingin dikendalikan untuk mengatur harga variabel yang dimanipulasi. Tujuan pengedalian ini adalah untuk mempertahankan variable yang dikendalikan pada level yang diinginkan (set point).
Sinyal output yang dihasilkan oleh pengendali feedback ini berupa pneumatic siqnal yaitu dengan menggunakan udara tekan. Tipe pengendali feedback yang umumnya digunakan, yaitu :
1. Jenis P (Proportional), digunakan untuk mengedalikan tekanan gas.
2. Jenis PI (Proportional Integral), digunakan untuk mengendalikan laju alir (flow), ketinggian (level) cairan, dan tekanan zat cair
3. Jenis PID (Proportional Integral Derivative), digunakan untuk mengendalikan temperatur
6.1.3 Variabel-Variabel Proses dalam Sistem Pengendalian
1. Tekanan
Peralatan untuk mengatur tekanan fluida adalah kombinasi silikon oil dalam membran/plat tipis dengan mengukur kuat arus listrik. Prinsipnya adalah perubahan kuat arus listrik akibat perubahan tekanan. Instrumen ini digunakan antara lain untuk mengukur tekanan pada reaktor dan tekanan keluar blower.
2. Temperatur
Peralatan untuk mengukur temperatur adalah thermocouple. Instrumen ini digunakan antara lain dalam pengukuran temperatur dalam reaktor, heat exchanger, crystalizer.
(67)
Peralatan yang digunakan untuk mengukur laju alir fluida adalah
venturimeter. Instrument ini digunakan antara lain dalam pegukuran laju alir zat masukan reaktor.
4. Perbandingan Laju Alir
Peralatan yang digunakan adalah sambungan mekanik yang dapat disesuaikan , pneumatic, atau elektronik. Hasil pengukuran laju alir, aliran yang satu menentukan (me-reset) set point laja alir aliran lainnya. Instrument ini digunakan pada pengukuran laju alir umpan reaktor.
5. Permukaan Cairan
Peralatan ini mengukur level permukaan cairan adalah pelampung dan lengan gaya. Prinsipnya adalah perubahan gaya apung yang dialami pelampung akibat perubahan level cairan. Pelampung yang mengapung pada permukaan cairan selalu mengikuti tinggi permukaan cairan sehingga gaa apung pelampung dapat diteruskan ke lengan gaya, seingga dapat diketahui tinggi cairan. Penggunaanya hádala untuk mengukur level permukaan fluida seperti pada kolom waste heat boiler, dan tangki.
6.1.4 Syarat Perancancangan Pengendalian
Beberapa syarat penting yang harus diperhatikan dlaam perancangan pabrik antara lain :
1. Tidak boleh terjadi konflik antara unit, di mana terdapat dua pengendali pada satu aliran.
2. Penggunaan supervisory computer control untuk mengkoordinasikan tiap unit pengendali.
(68)
3. Control valve yang digunakan sebagai elemen pengendali akhir memiliki
opening position 70%.
4. Dilakukan pemasangan check valve pada mixer dan pompa dengan tujuan untuk menghindari fluida kembali ke aliran sebelumnya. Check valve yang dipasang pada pipa tidak boleh lebih dari satu dalam one dependent line. Pemasangan check valve diletakkan setelah pompa.
5. seluruh pompa yang digunakan dalam proses diletakkan di permukaan tanah dengan pertimbangan syarat safety dari kebocoran.
6. Pada perpipaan yang dekat dengan alat utama dipasang flange dengan tujuan untuk mempermudah pada saat maintenance.
(69)
Tabel 6.1 Daftar penggunaan instrumentasi pada pra rancangan pabrik minyak makan merah.
No Nama Alat Instrumentasi Kegunaan
LI Menunjukkan tinggi cairan dalam tangki
1 Tangki Cairan
TC Mengontrol temperatur dalam tangki
2 Pompa FC Mengontrol laju alir cairan dalam pipa
TC Mengontrol temperatur dalam reaktor PC Mengontrol tekanan dalam reaktor 3 Reaktor
LC Mengontrol tinggi cairan dalam reaktor
TC Mengontrol temperatur dalam
4 Mixer
LC Mengontrol tinggi cairan dalam 5 Filter Press PC Mengontrol tekanan dalam filter
TC Mengontrol temperatur dalam crystalizer
6 Crystalizer
PC Mengontrol tekanan dalam crystalizer
7 Screw
Conveyor FC
Mengontrol laju alir bahan dalam screw conveyor
TC Mengontrol temperatur dalam deodorizer
LC Mengontrol tinggi cairan dalam deodorizer
8 Deodorizer
PC Mengontrol tekanan dalam deodorizer
9 Cooler TC Mengontrol temperatur dalam cooler
1. Instrumentasi Tangki
Tangki dapat berfungsi untuk tempat penyimpanan atau penampungan zat cair. Pada tangki ini dilengkapi dengan Level Indicator (LI) yang berfungsi untuk
(70)
mengontrol ketinggian cairan di dalam tangki. Prinsip kerja dari Level Indicator
ini adalah dengan menggunakan pelampung (floater) sehingga isi tangki dapat terlihat dari posisi penunjuk di luar tangki yang di gerakkan oleh pelampung. Untuk instrumentasi pada tangki penyimpanan stearin digunakan Temperatur Controller (TC) agar stearin tetap mencair pada suhu 45 0C
E-3
LI TC
Gambar 6.1 Instrumentasi Pada Tangki
2. Instrumentasi Pompa
Variabel yang dikontrol pada ponmpa adalah laju aliran (flow rate). Untuk mengetahui laju aliran pada pompa dipasang Flow Controller (FC) yang berfungsi untuk mengendalikan aliran agar kecepatan alirnya seperti yang diharapkan. Jika laju aliran pompa lebih besar dari yang diinginkan maka secara otomatis katup pengendali (Control Valve) akan menutup atau memperkecil pembukaan katup.
FC
(71)
3. Instumentasi Reaktor
Reaktor sebagai alat tempat berlangsungnya reaksi antara bahan-bahan yang digunakan. Dalam pabrik ini, reaktor sebagai tempat terjadinya reaksi saponifikasi antara stearin dan Natrium Hidroksida, dan juga sebagai tempat terjadinya pencampuran antara RBDPO dan Sabun untuk menghasilkan pelumas padat. Instrumentasi pada reaktor mencakup Level Controller (LC), Pressure Controller (PC) dan Temperature Controller (TC), LC berfungsi untuk mempertahankan tinggi cairan dalam reaktor, mengendalikan ketinggian cairan dalam reaktor yang digunakan Level Controller (LC) dengan tujuan agar tidak terjadi kelebihan muatan. PC berfungsi untuk mempertahankan tekanan dalam reaktor agar tetap 1 atm. Sedangkan TC berfungsi untuk mempertahankan temperatur operasi dalam reaktor agar tetap 120 0C pada proses pencampuran pelumas padat dan menjaga agar temperatur tetap pada suhu 78 0C pada reaktor pembuatan sabun.
E-1
Gambar 6.3 Instrumentasi Pada Reaktor
Umpan M k
TC
Steam
PC LC
M k
Produk
Kondensat K l
(72)
4. Insturmentasi mixer
Instrumentasi pada mixer mencakup temperatur control (TC) dan level controler (LC). Level controler (LC) berfungsi untuk mengontrol tinggi cairan dalam mixer dengan mengatur bukaan katup aliran bahan keluar mixer. Bila ketinggian bahan melebihi batas yang dimaksud, maka valve pemasukan bahan akan menutup atau mengecil bukaan secara otomatis, dan sebaliknya. Temperatur controller (TC) berfungsi untuk mengontrol temperatur dalam mixer dengan mengatur bukaan katup steam.
E-3
Gambar 6.4 Instrumentasi Pada Mixer
5. Instrument pada Cooler
Temperatur control (TC) berfungsi untuk mengatur besarnya suhu didalam cooler dengean cara mengatur banyaknya air pendingin yang dialirkan. Jika temperatur dibawah kondisi yang diharapkan (set point), maka valve akan terbuka lebih besar dan jika tempretur di atas kondisi yang diharapkan (set point) maka bukaan valve akan lebih kecil.
Umpan M k
LC TC
Steam M k
Produk K l Kondensat
(73)
TC
Gambar 6.5 Instrumentasi Pada Cooler
6. Filter Press
Instrumentasi pada filter press mencakup pressure control (PC). PC berfungsi untuk mempertahankan tekananan pada filter.
PC
Gambar 6.6 Instrumentasi Pada Filter Press
7. Instrumentasi Crystallizer
Instrumentasi pada kristalisator mencakup temperatur controller (TC). TC berfungsi untuk mempertahankan temperatur pada kristalisator agar tetap 12oC.
(74)
Umpan
E-1
Gambar 6.7 Instrumentasi Pada Crystalizer
8. Instrumentasi Screw Conveyor
Instrumentasi pada screw conveyor mancakup flow controller (FC) yang berfungsi untuk mengatur laju bahan pada screw conveyor dengan mengatur laju putaran screw conveyor.
Gambar 6.8 Instrumentasi Pada Screw Conveyor
FC
M k
Produk
LC Air pendingin
Air
TC
Air pendingin
Air
(75)
6.2 Keselamatan kerja Pabrik
Aktifitas masyarakat umumnya berhubungan dengan resiko yang dapat mengakibatkan kerugian pada badan atau usaha. Karena itu usaha-usaha keselamatan merupakan tugas sehari-hari yang harus dilakukan oleh seluruh karyawan.
Keselamatan kerja dan keamanan pabrik merupakan faktor yang perlu diperhatikan ssecara serius. Dalam hubungan ini bahaya yang dapat timbul dari mesin, bahan baku dan produk, sifat zat, serta keadaan tempat kerja harus mendapat perhatian yang serius sehingga dapat dikendalikan dengan baik untuk menjamin kesehatan karyawan.
Perusahaan yang lebih besar memiliki divisi keselamatan tersendiri. Divisi tersebut mempunyai tugas memberikan penyuluhan, pendidikan, petunjuk-petunjuk, dan pengaturan agar kegiatan kerja sehari-hari berlangsung aman dan bahaya-bahaya yang akan terjadi dapat diketahui sedini mungkin, sehingga dapat dihindarkan (Bernasconi, 1995)
Statistik menunjukkan bahwa angka kecelakaan rata-rata dalam pabrik kimia relatif tidak begitu tinggi. Tetapi situasi beresiko mimiliki bentuk khusus, misalnya reaksi kimia yang berlangsung tanpa terlihat dan hanya dapat diamanati dan dikendalikan berdasarkan akibat yang akan ditimbulkannya. Kesalahan-kesalahan dalam hal ini dapat mengakibatkan kejadian yang fatal. (Bernasconi, 1995)
(76)
Dari 330 peristiwa
Kerusakan (badan atau benda) dapat terjadi secara tiba-tiba tanpa dikehendaki dan diduga sebelumnya. Keadaan atau tindakan yang bertentangan dengan aturan keselamatan kerja dapat memencing bahaya yang akut dan mengakibatkan terjadinya kerusakan.
Untuk menjamin keselamatan kerja, maka dalam perencanaan suatu pabrik perlu diperhatikan beberapa hal, yaitu :
Lokasi pabrik
Sistem pencegahan kebocoran
Sistem perawatan
Sistem penerangan
Sistem penyimpanan material dan perlengkapan
Sistem pemadam kebakaran
Di samping itu terdapat beberapa peraturan dasar keselamatan kerja yang harus diperhatikan pada saat bekerja di setiap pabrik-pabrik kimia, yaitu:
2
300
Hanya kerusakan benda
Cedera ringan
28
Cedera berat sampai cedera mematikan
(77)
Tidak boleh merokok atau makan
Tidak boleh minum minuman keras (beralkohol) selama bertugas
Bahaya dan tindakan-tindakan yang tidak memperhatikan keselamatan akan mengakibatkan kerusakan. Yang menjamin keselamatan kerja sebetulnya adalah pengetahuan mengenai bahaya sedini mungkin, sehingga pencegahan dapat diupayakan sebelum bahaya tersebut terjadi.
Berikut ini upaya-upaya pencegahan terhadap bahaya-bahaya yang mungkin terjadi pada pra-rancangan pabrik pembuatan asam sulfanilat dapat dilakukan dengan cara:
1. Pencegahan terhadap kebakaran
Memasang sistem alarm pada tempat yang strategis dan penting, seperti : power station, laboratorium dan ruang proses.
Mobil pemadam kebakaran harus selalu dalam keadaan siap siaga di
fire station.
Fire hydrant ditempatkan didaerah storage, proses, dan perkantoran.
Fire extinguiser disediakan pada bangunan pabrik untuk memadamkan api yang relatif kecil.
Smoke detector ditempatkan pada setiap sub-statiun listrik untuk mendeteksi kebakaran melalui asapnya.
2. Memakai peralatan perlindungan diri
Di dalam pabrik disediakan peralatan perlindungan diri, seperti:
Pakaian pelindung
(1)
Maka Pajak Penghasilan yang harus dibayar adalah :
10 % x Rp.50.000.000.- = Rp. 5.000.000,- 15 % x (Rp.100.000.000.- - Rp, 50.000.000.-) = Rp. 7.500.000,- 30 % x (Rp. 314.761.287.600,- Rp. 100.000.000,-) = Rp. 94.398.386.270,- + Total pajak penghasilan (PPh) = Rp. 94.410.886.270,- C. Laba Setelah Pajak
Laba setelah pajak = Laba sebelum pajak – PPh
= Rp. 314.761.287.600,- - Rp. 94.410.886.270,- = Rp. 220.350.401.300,-
5. Analisa Aspek Ekonomi A. Profit Margin (PM)
PM = 100%
penjualan total
pajak sebelum
Laba
x
PM = 100%
2.800,-449.983.73
Rp.
7.600,-314.761.28
Rp.
x
= 69,95 %
B. Break Even Point (BEP)
BEP = 100%
Variabel Biaya
-Penjualan Total
Tetap Biaya
x
BEP = 100%
.350,-52.349.216 Rp.
- 2.800,-449.983.73
Rp.
.880,-82.873.228 Rp.
x
= 20,84 %
C Return on Investement (ROI)
Return on Investment adalah besarnya persentase pengembalian modal setiap tahun dari penghasilan bersih.
ROI = 100%
investasi modal
Total
pajak setelah Laba
(2)
LE-28
ROI = 100%
9.400,-343.300.28
Rp.
1.300,-220.350.40
Rp.
x
= 64,18 % D. Pay Out Time (POT)
POT = x Tahun
ROI 1 1
POT = x1Tahun 0,6418
1
= 1,5579 Tahun ≈ 1,6 Tahun
F. Internal Rate of Return (IRR)
Untuk menentukan nilai IRR harus digambarkan jumlah pendapatan dan pengeluaran dari tahun ke tahun yang disebut ”Cash Flow”. Untuk memperoleh cast flow diambil ketentuan sebagai berikut :
- Laba kotor diasumsikan mengalami kenaikan 10 % tiap tahun. - Harga tanah diasumsikan mengalami kenaikan 10 % tiap tahun. - Amortasi dihitung untuk 5 tahun.
- Masa pembangunan disebut tahun ke-nol. - Jangka waktu cash flow dipilih 10 tahun.
- Perhitungan dilakukan dengan menggunakan nilai pada tahun ke-10. - Cash flow = Laba sesudah pajak + Depresiasi + Harga tanah + Amortasi Internal rate of return merupakan persentase yang menggambarkan keuntungan rata - rata bunga pertahun dari semua pengeluaran dan pemasukan, apabila IRR ternyata lebih besar dari bunga rill yang berlaku, maka pabrik akan menguntungkan, tetapi bila IRR lebih kecil dari bunga rill yang berlaku maka pabrik dianggap rugi.
Dari Tabel LE.13 diperoleh IRR = 70,51 %, sehingga pabrik akan menguntungkan karena lebih besar dari bunga pinjaman bank saat ini yaitu sebesar 25 % (Bank Indonesia, 2008).
(3)
STRUKTUR ORGANISASI PERUSAHAAN
PABRIK PEMBUATAN MINYAK MAKAN MERAH DARI CPO
Keterangan : Garis komando
Koordinasi RUPS
Dewan Komisaris
Sekretaris
Direktur
Manajer Produksi Manajer Teknik Manajer Personalia Manajer Keuangan Manajer Pemasaran
Kabag Produksi
Kabag Utilitas
Kasie Operasi
Kasie R & D
Kasie Lab
Kasie Air
Kasie Limbah
Kabag Mesin
Kasie Instrumentasi
Kasie Maintanence
Kabag Kepegawaian
Kabag Listrik
Kasie Kesehatan
Kasie Keamanan
Kabag Administrasi
Kabag Perpajakan
Kasie Adm
Kasie Akuntansi
Kabag Pembelian
KARYAWAN
Kabag Penjualan
(4)
Tabel LE.13 Data Perhitungan Internal of Rate Return (IRR)
Thn Laba Kotor PPh Laba Bersih Depresiasi Net Cash Flow
P/F
(i%,n) PV
P/F
(i%,n) PV
70 71
0 0 0 -Rp343,300,289,400.00 0 0
-Rp343,300,289,400.00 -Rp343,300,289,400.00 1 Rp314,761,287,600.00 Rp94,410,886,270.00 Rp220,350,401,330.00 Rp11,548,113,420.00 Rp208,802,287,910.00 0.588235 Rp122,824,875,241.00 0.584795 Rp122,106,601,116.00 2 Rp346,237,416,360.00 Rp103,853,724,908.00 Rp242,383,691,452.00 Rp11,548,113,420.00 Rp230,835,578,032.00 0.346021 Rp79,873,902,433.00 0.341986 Rp78,942,436,316.00 3 Rp380,861,157,996.00 Rp114,240,847,398.00 Rp266,620,310,597.00 Rp11,548,113,420.00 Rp255,072,197,177.00 0.203542 Rp51,917,809,317.00 0.199992 Rp51,012,286,716.00 4 Rp418,947,273,795.00 Rp125,666,682,138.00 Rp293,280,591,656.00 Rp11,548,113,420.00 Rp281,732,478,236.00 0.11973 Rp33,731,933,075.00 0.116954 Rp32,949,776,564.00 5 Rp460,842,001,175.00 Rp138,235,100,352.00 Rp322,606,900,822.00 Rp11,548,113,420.00 Rp311,058,787,402.00 0.07043 Rp21,907,754,612.00 0.068394 Rp21,274,625,442.00 6 Rp506,926,201,292.00 Rp152,060,360,387.00 Rp354,865,840,904.00 Rp11,548,113,420.00 Rp343,317,727,484.00 0.041429 Rp14,223,376,326.00 0.039997 Rp13,731,550,132.00 7 Rp557,618,821,421.00 Rp167,268,146,426.00 Rp390,350,674,995.00 Rp11,548,113,420.00 Rp378,802,561,575.00 0.02437 Rp9,231,461,387.00 0.02339 Rp8,860,130,822.00 8 Rp613,380,703,564.00 Rp183,996,711,069.00 Rp429,383,992,494.00 Rp11,548,113,420.00 Rp417,835,879,074.00 0.014335 Rp5,989,828,095.00 0.013678 Rp5,715,271,241.00 9 Rp674,718,773,920.00 Rp202,398,132,176.00 Rp472,320,641,744.00 Rp11,548,113,420.00 Rp460,772,528,324.00 0.008433 Rp3,885,494,385.00 0.007999 Rp3,685,713,595.00 10 Rp742,190,651,312.00 Rp222,639,695,393.00 Rp519,550,955,918.00 Rp11,548,113,420.00 Rp508,002,842,498.00 0.00496 Rp2,519,862,993.00 0.004678 Rp2,376,320,630.00
Total Rp3,168,413,712,517.00 Rp2,806,008,467.00 -Rp2,645,576,820.67
IRR = 70% +
6.820,00 (-2.645.57
-467,00 2.806.008.
467,00 2.806.008.
x ( 71 – 70) %
(5)
Gra fik Ana lisa BEP
Rp0.00 Rp50,000,000,000.00 Rp100,000,000,000.00 Rp150,000,000,000.00 Rp200,000,000,000.00 Rp250,000,000,000.00 Rp300,000,000,000.00 Rp350,000,000,000.00 Rp400,000,000,000.00 Rp450,000,000,000.00 Rp500,000,000,000.00
0 10 20 30 40 50 60 70 80 90 100
(6)
L1 F1 FC
L1 P-1
FC
L-2
H-1
F-2
SC-1
F-3 FC
L-3
M-1 L1 F-4
FC
L-4
FC
L-5
H-2
F-5
SC-2
F-6 FC
L-6 TC
LC
FC
L-8
H-3
F-8
SC-3 FC
L-9 L1 F-7
FC
L-7
F-9 TC
LC V-1
FC
L-10 FC
L-11
F-11
FC
L-12
F-10
Chilling water
Air pemanas Air pendingin
Steam
TC
E-1 K-1
Air pemanas Air pendingin
Chilling water Steam
R-1
LC TC
LC TC TC