Pengujian Kompor Surya Tipe Kotak Dilengkapi Absorber Miring
PENGUJIAN KOMPOR SURYA TIPE KOTAK
DILENGKAPI
ABSORBER
MIRING
SKRIPSI
Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik
HERU MANIMBUL HUTASOIT NIM. 090401043
DEPARTEMEN TEKNIK MESIN
FAKULTAS TEKNIK
UNIVERSITAS SUMATERA UTARA
MEDAN
(2)
PENGUJIAN KOMPOR SURYA TIPE KOTAK
DILENGKAPI
ABSORBER
MIRING
HERU MANIMBUL HUTASOIT NIM. 09 0401 043
Diketahui / Disahkan : Disetujui Oleh :
Departemen Teknik Mesin Dosen Pembimbing,
Fakultas Teknik USU Ketua,
Dr. Ing. Ir. Ikhwansyah Isranuri Ir. Tekad Sitepu
NIP: 1964 1224 1992 111001 NIP : 195212221978031002
(3)
PENGUJIAN KOMPOR SURYA TIPE KOTAK
DILENGKAPI
ABSORBER
MIRING
HERU MANIMBUL HUTASOIT NIM. 090401043
Telah Disetujui Dari Hasil Seminar Skripsi Periode ke 695 pada Tanggal 25 Juli 2014
Pembimbing,
Ir.Tekad Sitepu NIP. 195212221978031002
(4)
PENGUJIAN KOMPOR SURYA TIPE KOTAK
DILENGKAPI
ABSORBER
MIRING
HERU MANIMBUL HUTASOIT NIM. 090401043
Telah Disetujui Dari Hasil Seminar Skripsi Periode ke 695 pada Tanggal 25 Juli 2014
Pembanding I, Pembanding II,
Dr. Eng. Himsar Ambarita, ST., MT Tulus B Sitorus, ST., MT NIP. 197206102000121001 NIP. 197209232000121003
(5)
DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK USU MEDAN
KARTU BIMBINGAN
TUGAS SARJA
NA MAHASISWA
NO : 2133/TS/2013 Sub. Program Studi : Konversi Energi
Bidang Studi : Perpindahan Panas
Judul Tugas : Pengujian Kompor Surya Tipe Kotak Dilengkapi Absorber Miring.
Diberikan Tgl. : 18 Februari 2014 Selesai Tgl.: 18 Agustus 2014 Dosen Pembimbing : Ir. Tekad Sitepu Nama Mhs : Heru Manimbul H.
N.I.M : 090401043
No. Tanggal Kegiatan Asistensi Bimbingan Tanda Tangan Dosen Pemb. 1. 18 Februari 2014 Spesifikasi tugas skripsi
2. 27 Februari 2014 ACC proposal 3. 3 Maret 2014 Asistensi Bab I 4. 15 Maret 2014 Asistensi Bab II 5. 12 Mei 2014 Asistensi Bab III 6. 7 Juni 2014 Pembuatan Alat 7. 14 Juni 2014 Pengujian
8. 21 Juni 2014 Asistensi Bab IV 9. 10 Juli 2014 Asistensi Bab V 10. 17 Juli 2014 Asistensi keseluruhan 11. 19 Juli 2014 ACC seminar
12.
CATATAN : Diketahui,
1. Kartu ini harus diperlihatkan kepada Ketua Departemen Teknik Mesin Dosen Pembimbing setiap Asistensi. F.T. U.S.U
2. Kartu ini harus dijaga bersih dan rapi.
3. Kartu ini harus dikembalikan ke Departemen,
bila kegiatan Asistensi telah selesai. Dr. Ing. Ir. Ikhwansyah Isranuri NIP 196412241992111001
(6)
DEPARTEMEN TEKNIK MESIN AGENDA : 2133/TS/2013 FAKULTAS TEKNIK USU DITERIMA : 17 / 02 /2013 MEDAN PARAF :
TUGAS SARJANA
NAMA : HERU MANIMBUL HUTASOIT
N I M : 090401043
MATA PELAJARAN : PERPINDAHAN PANAS
SPESIFIKASI : Lakukanlah pengujian sebuah kompor surya tipe kotak yang dilengkapi absorber miring sebagai kolektor dan penyuplai panas pada kompor surya tersebut secara konveksi natural dengan luas absorber rata dan miring adalah 0,59 m x 0,59 m dan 0,9 m x 0,59 m. Ujilah kompor tersebut dengan memanaskan air (H2O) secara
langsung pada kondisi cerah. Lakukanlah pengukuran temperatur maksimum yang dicapai air, efisiensi kompor tersebut dan intensitas radiasi matahari selama pengujian berlangsung.
DIBERIKAN TANGGAL : 18 Februari 2014 SELESAI TANGGAL : 18 Agustus 2014
MEDAN, 18 Februari 2014
KETUA DEPARTEMEN TEKNIK MESIN, DOSEN PEMBIMBING,
Dr.Ing.Ir. Ikhwansyah Isranuri Ir. Tekad Sitepu
(7)
PENGUJIAN KOMPOR SURYA TIPE KOTAK
DILENGKAPI
ABSORBER
MIRING
HERU MANIMBUL HUTASOIT NIM. 090401043
Telah disetujui oleh: Pembimbing,
Ir.Tekad Sitepu NIP. 195212221978031002
Penguji I, Penguji II,
Dr. Eng. Himsar Ambarita, ST., MT Tulus B Sitorus, ST., MT NIP. 197206102000121001 NIP. 197209232000121003
Diketahui oleh : Departemen Teknik Mesin
Ketua,
Dr. Ing. Ir. Ikhwansyah Isranuri NIP. 196412241992111001
(8)
KATA PENGANTAR
Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa karena atas rahmat dan karunia-Nyalah penulis dapat menyelesaikan skripsi ini yang berjudul “PENGUJIAN KOMPOR SURYA TIPE KOTAK DILENGKAPI ABSORBER MIRING” dengan baik. Skripsi ini disusun untuk memenuhi syarat menyelesaikan Pendidikan Strata-1 (S1) pada Departemen Teknik Mesin Sub bidang Konversi Energi, Fakultas Teknik, Universitas Sumatera Utara.
Dalam menyelesaikan skripsi ini, penulis banyak mendapat dukungan dari berbagai pihak berupa dorongan, semangat, doa dan bantuan baik materil, moril, maupun spirital. Untuk itu pada kesempatan ini, Penulis mengucapkan terima kasih yang sebesar-besarnya kepada :
1. Kedua orang tua penulis M.Hutasoit dan R.Sihotang yang tidak pernah putus-putusnya memberikan dukungan materil dan doa serta kasih sayangnya yang tak terhingga kepada penulis.
2. Bapak Ir. Tekad Sitepu selaku dosen pembimbing, yang dengan penuh kesabaran telah memberikan bimbingan dan motivasi kepada penulis.
3. Bapak Dr.Eng. Himsar Ambarita,ST.MT. dan Bapak Tulus B.Sitorus, ST.MT sebagai dosen pembanding yang telah bersedia memberikan saran dan kritik yang sangat membangun.
4. Bapak Dr. Ing. Ir. Ikhwansyah Isranuri selaku Ketua Departemen Teknik Mesin Universitas Sumatera Utara.
5. Bapak Ir. M. Syahril Gultom, MT. selaku Sekretaris Departemen Teknik Mesin Universitas Sumatera.
6. Bapak Mahadi, ST selaku dosen wali.
7. Seluruh staf pengajar dan pegawai administrasi Jurusan Teknik Mesin di Universitas sumatera Utara, Yang telah banyak membantu penulis dan memberikan bimbingan selama perkuliahan.
(9)
8. Rekan satu team skripsi yaitu Zulvia C.Ginting.
9. Seluruh mahasiswa Departemen Teknik Mesin Universitas Sumatera Utara terkhusus stambuk 2009 yang tidak dapat saya sebutkan satu per satu.
Dengan sepenuh hati, penulis mengharapkan kritik dan saran yang membangun demi penyempurnaan skripsi ini. Akhir kata,penulis mengucapkan terima kasih atas perhatiannya.
Medan, 18 Februari 2014 Penulis,
(10)
ABSTRAK
Penelitian dilakukan melalui percobaan memanaskan air dengan kompor surya tipe kotak yang dilengkapi absorber dan miring yang memiliki luas kolektor 0,59 m x 0,59 m dan 0,9 m x 0,59 m. Penelitian dilakukan pada kondisi cuaca cerah. Pada kompor surya diharapkan absorber miring dapat mensuplai panas dengan prinsip konveksi alamiah. Percobaan dilakukan dengan memanaskan air sebanyak 1, 2 dan 3 liter mencapai suhu 87,83oC, 77,97oC, dan 88,74 oC dengan efisiensi 4,357 %, 6,091 % dan 10,419 %. Perbedaan temperatur tersebut dipengaruhi oleh besarnya intensitas radiasi selama pengujian dengan besar intersitas radiasi pengukuran rata-rata 595,9 W/m2, 478,5 W/m2 , dan 619,26 W/m2. Efisiensi meningkat seiring meningkatnya kapasitas air yang diuji serta laju penyerapan energi oleh air. Semakin banyak energi yang diserap oleh air maka efisiensi akan meningkat pula. Energi panas yang diterima air selama pengujian 1 liter, 2 liter dan 3 liter adalah 0,2397 MJ, 0,423 MJ ,dan 0,735 MJ dengan energi radiasi yang diserap oleh absorber sebesar 5,5 MJ, 6,94 MJ dan 7,05 MJ.
(11)
ABSTRACT
The study was conducted through an experiment heating water with solar cookers box type absorber equipped and oblique that has collector area of 0.59 mx 0.59 mx 0.59 m and 0.9 m. The study was conducted in fine weather conditions. In the solar cooker can be tilted absorber is expected to supply heat to the principle of natural convection. Experiments carried out by heating the water as much as 1, 2 and 3 liters of reach temperatures 87,83oC, 77,97oC, and 88.74 ° C with efficiency 4.357%, 6.091% and 10.419%. The difference in temperature is influenced by the magnitude of the intensity of radiation during the tests with large intersitas average radiation measurements 595.9 W / m 2, 478.5 W / m 2, and 619.26 W / m 2. Efficiency increases with increasing the capacity of the water tested as well as the rate of energy absorption by water. The more energy that is absorbed by water, the efficiency will increase as well. Heat energy received 1 liter of water during the test, 2 liters and 3 liters is 0.2397 MJ, MJ 0.423, and 0.735 MJ of radiation energy absorbed by the absorber at 5.5 MJ, 6.94 MJ and 7.05 MJ
(12)
DAFTAR ISI
HALAMAN JUDUL ... i
KATA PENGANTAR ... ii
ABSTRAK ... iv
ABSTRACT ... v
DAFTAR ISI ... vi
DAFTAR GAMBAR ... viii
DAFTAR GRAFIK... ix
DAFTAR SIMBOL... x
DAFTAR TABEL ... xi
BAB I PENDAHULUAN ... 1
1.1Latar Belakang ... 1
1.2Tujuan Penelitian ... 2
1.3Batasan Masalah ... 2
1.4Manfaat Penelitian ... 2
1.5Sistematika Penulisan ... 3
BAB II TINJAUAN PUSTAKA ... 5
2.1Perpindahan Panas ... 5
2.1.1 Perpindahan Panas Konduksi ... 5
2.1.2 Teori Dasar Konveksi ... 5
2.1.3 Perhitungan Panas Radiasi... 6
2.2Radiasi Surya ... 6
2.2.1 Teori Dasar Radiasi Surya ... 7
2.2.2 Posisi Matahari ... 9
2.3 Konveksi Paksa... 11
2.4 Konveksi Alamiah ... 12
2.4.1 Konveksi Alamiah pada Plat luar ... 12
2.4.2 Konveksi Alamiah pada Ruang Tertutup ... 13
2.5 Efisiensi Termal ... 17
(13)
2.7 Kompor Surya ... 21
2.7.1 Sejarah Kompor Surya... 21
BAB III METODOLOGI PENELITIAN ... 23
3.1 Objek Penelitian ... 23
3.2 Parameter Penelitian ... 23
3.3 Waktu dan Tempat ... 23
3.4 Peralatan Pengujian ... 23
3.5 Bahan Pengujian ... 27
3.6 Experimental Setup... 29
3.7 Prosedur Pengujian ... 31
BAB IV DATA DAN ANALISA DATA ... 32
4.1 Design Kompor Surya ... 33
4.2 Rancangan Perhitungan Kehilangan Panas Kompor Surya ... 47
4.3 Hasil Pengujian ... 47
4.3.1 Hasil Pengujian 11 Juni 2014 ... 48
4.3.2 Hasil Pengujian 12 Juni 2014 ... 50
4.3.3 Hasil Pengujian 13 Juni 2014 ... 51
4.4 Analisa Data Hasil Pengujian ... 51
4.4.1 Analisa Data Hasil Pengujian 11 Juni 2014 ... 55
4.4.2 Analisa Data Hasil Pengujian 12 Juni 2014 ... 59
4.4.3 Analisa Data Hasil Pengujian 13 Juni 2014 ... 62
4.5 Efisiensi ... 62
4.5.1 Efisiensi Pengujian 11 Juni 2014 ... 62
4.5.2 Efisiensi Pengujian 12 Juni 2014 ... 63
4.5.3 Efisiensi Pengujian 13 Juni 2014 ... 64
BAB V KESIMPULAN DAN SARAN... 64
5.1 Kesimpulan ... 64
5.2 Saran ... 64
DAFTAR PUSTAKA ... 65 LAMPIRAN ...
(14)
DAFTAR GAMBAR
Gambar 2.1 Radiasi sorotan tiap jam pada permukaan miring dari
pengukuran Ib ... 8
Gambar 2.2 Radiasi sinar matahari ... 9
Gambar 2.3 Deklinasi matahari ... 10
Gambar 2.4 Posisi sudut matahari ... 11
Gambar 2.5 Ruang tertutup yang tinggi dan rendah ... 13
Gambar 2.6 Ruang tertutup ... 14
Gambar 2.7 konveksi alamiah pada ruang tertutup yang miring ... 16
Gambar 2.8 Solar Water Heater[ ... 19
Gambar 2.9 Kompor surya panel ... 19
Gambar 2.10 Solar Driers ... 20
Gambar 3.1 Komputer ... 23
Gambar 3.2 Agilient 3 a 972 A... 24
Gambar3.3 Hobo Microstation data logger ... 25
Gambar 3.4 Kompor Surya ... 26
Gambar 3.5 Kayu ... 28
Gambar 3.6 Rockwool ... 28
Gambar 3.7 Kaca ... 29
Gambar 3.8 Sterofoam ... 29
Gambar 3.9 Pelat Aluminium ... 29
Gambar 3.10 Experiment Setup ... 30
Gambar 3.11 Diagram Alir ... 32
Gambar 4.1 Design Kompor Surya ... 33
Gambar 4.2 Body 1 Kompor Surya ... 34
(15)
DAFTAR GRAFIK
Grafik 4.1 Temperatur terhadap waktu pada pengujian I. ... 36
Grafik 2.2 Intensitas Rad.Matahari terhadap waktu pada pengujian I ... 37
Grafik 4.3 Temperatur terhadap waktu pada pengujian II ... 38
Grafik 4.4 Intensitas Rad.Matahari terhadap waktu pada pengujian II ... 38
Grafik 4.5 Temperatur terhadap waktu pada pengujian III ... 39
Grafik 4.6 Intensitas Rad.Matahari terhadap waktu pada pengujian III ... 40
(16)
DAFTAR SIMBOL
Simbol Keterangan Satuan
A Luas penampang m2
�� Panas jenis kJ/kg. K
ℎ Koefisien perpindahan panas konveksi W/m2. K
Konduktivitas termal bahan W/m. K
L Panjang plat m
t Tebal isolasi m
� Bilangan Nusselt -
� Bilangan Prandtl -
�� Bilangan Reynold kJ
�∞ Temperatur lingkungan luar ℃
� Temperatur permukaan ℃
Viskositas kinematik m2/s
I Intensitas radiasi W/m2
�� Bilangan Rayleigh -
q Laju perpindahan panas W
Q Energi panas MJ
m Massa zat kg
g Grafitasi m/s2
Huruf Yunani
Simbol Arti Satuan
∆� Perbedaan Temperatur awal dan akhir oC
� Massa Jenis kg/m3
� Effisiensi -
� Koefisien udara 1/K
σ Konstanta Stefan Boltzomann(5,67 x 10-8) �/ 2�4
(17)
DAFTAR TABEL
Tabel 2.1 Sudut kritis ruang tertutup miring ... 17
Tabel 4.1 Perhitungan Radiasi pada Permukaan Miring hari I... 43
Tabel 4.2 Perhitungan Radiasi pada Permukaan Miring hari II ... 46
(18)
ABSTRAK
Penelitian dilakukan melalui percobaan memanaskan air dengan kompor surya tipe kotak yang dilengkapi absorber dan miring yang memiliki luas kolektor 0,59 m x 0,59 m dan 0,9 m x 0,59 m. Penelitian dilakukan pada kondisi cuaca cerah. Pada kompor surya diharapkan absorber miring dapat mensuplai panas dengan prinsip konveksi alamiah. Percobaan dilakukan dengan memanaskan air sebanyak 1, 2 dan 3 liter mencapai suhu 87,83oC, 77,97oC, dan 88,74 oC dengan efisiensi 4,357 %, 6,091 % dan 10,419 %. Perbedaan temperatur tersebut dipengaruhi oleh besarnya intensitas radiasi selama pengujian dengan besar intersitas radiasi pengukuran rata-rata 595,9 W/m2, 478,5 W/m2 , dan 619,26 W/m2. Efisiensi meningkat seiring meningkatnya kapasitas air yang diuji serta laju penyerapan energi oleh air. Semakin banyak energi yang diserap oleh air maka efisiensi akan meningkat pula. Energi panas yang diterima air selama pengujian 1 liter, 2 liter dan 3 liter adalah 0,2397 MJ, 0,423 MJ ,dan 0,735 MJ dengan energi radiasi yang diserap oleh absorber sebesar 5,5 MJ, 6,94 MJ dan 7,05 MJ.
(19)
ABSTRACT
The study was conducted through an experiment heating water with solar cookers box type absorber equipped and oblique that has collector area of 0.59 mx 0.59 mx 0.59 m and 0.9 m. The study was conducted in fine weather conditions. In the solar cooker can be tilted absorber is expected to supply heat to the principle of natural convection. Experiments carried out by heating the water as much as 1, 2 and 3 liters of reach temperatures 87,83oC, 77,97oC, and 88.74 ° C with efficiency 4.357%, 6.091% and 10.419%. The difference in temperature is influenced by the magnitude of the intensity of radiation during the tests with large intersitas average radiation measurements 595.9 W / m 2, 478.5 W / m 2, and 619.26 W / m 2. Efficiency increases with increasing the capacity of the water tested as well as the rate of energy absorption by water. The more energy that is absorbed by water, the efficiency will increase as well. Heat energy received 1 liter of water during the test, 2 liters and 3 liters is 0.2397 MJ, MJ 0.423, and 0.735 MJ of radiation energy absorbed by the absorber at 5.5 MJ, 6.94 MJ and 7.05 MJ
(20)
BAB I
PENDAHULUAN
1.1 Latar Belakang
Semakin langkanya bahan bakar fossil menimbulkan berbagai masalah dalam kehidupan sehari-hari. Kelangkaan itu diakibatkan semakin tingginya ketergantungan kita akan penggunaan bahan bakar fossil sementara cadangan yang tersedia dibumi ini semakin menipis dan tidak menutup kemungkinan suatu saat akan habis. Penggunaan bahan bakar fossil diketahui menimbulkan masalah perubahan kondisi bumi yang tidak lagi kondusif seperti suhu udara yang tidak lagi menentu akibat gas efek rumah kaca yang dihasilkan penggunaan bahan bakar fossil. Kelangkaan bahan bakar fossil mengakibatkan pasokan menjadi terbatas sehingga peningkatan harga tidak bisa dibendung. Kenaikan harga bahan bakar fossil menimbulkan efek domino yakni barang kebutuhan pokok dan yang lainnya ikut naik.
Dewasa ini banyak solusi alternatif yang ditawarkan untuk mengurangi dampak permasalahan ini. Salah satu solusinya yakni menggantikan penggunaan energi yang tidak dapat diperbaharui dengan energi terbarukan serta ramah lingkungan. Energi terbarukan ini berupa energi yang tersedia di alam secara gratis dan tidak akan habis bila digunakan seperti energi angin, energi gelombang pasang-surut air laut, energi potensial air terjun, energi matahari dan energi lainnya.
Panas matahari merupakan suatu energi yang potensial untuk di kelola dan dikembangkan lebih lanjut sebagai sumber cadangan energi terutama bagi negara– negara yang terletak di daerah garis khatulistiwa termasuk di Indonesia, di mana matahari dapat bersinar sepanjang tahun.
Energi panas matahari sangat potensial untuk dimanfaatkan karena Indonesia terletak di garis khatulistiwa. Energi matahari mempunyai keuntungan yaitu kita tidak perlu membayar untuk memperolehnya, tetapi mempunyai kelemahan karena tidak konstan intensitasnya.
Di negara berkembang, konsumsi energi terbesar adalah untuk keperluan memasak (C.R.Chen, dkk : 2009). Sebagian besar penggunaan energi untuk memasak adalah berasal dari bahan bakar fosil. Bahan bakar fosil selain
(21)
merupakan bahan bakar yang tidak dapat diperbaharui , bahan bakar jenis ini juga mengakibatkan dampak lingkungan diantaranya menyebabkan pemanasan global, dan mengeluarkan gas beracun akibat pembakaran yang tidak sempurna.
Untuk membantu mengatasi permasalahan diatas, maka diperlukan suatu inovasi teknologi yang menggunakan tenaga yang dapat diperbaharui (renewable energy) seperti penggunanan energi matahari untuk keperluan memasak atau yang lebih dikenal dengan kompor surya. Potensi energi matahari di Indonesia khususnya kota medan sangatlah besar. Oleh karena itu ,Penulis tertarik untuk merancang kompor surya sehingga dapat menghemat penggunaan bahan bakar fosil dimasa mendatang.
1.2 Tujuan Penelitian
Adapun tujuan penelitian adalah sebagai berikut :
1. Untuk mengetahui apakah rancangan kompor surya tipe kotak dilengkapi absorber miring dapat digunakan memasak air secara langsung.
2. Menghitung efisiensi kompor surya.
1.3 Batasan Masalah
Batasan masalah dalam penelitian ini adalah
1. Pengujian kompor surya yang digunakan adalah tipe kotak yang dilengkapi dengan absorber miring dimana udara sebagai fluida kerjanya.
2. Proses perpindahan panas dari absorber miring dengan cara konveksi natural.
3. Pengujian dilakukan pada kondisi cuaca cerah 4. Bahan yang digunakan pada pengujian adalah air. 5. Temperatur air maksimum yang dapat dicapai.
(22)
1.4 Manfaat Penelitian
Adapun manfaat penelitian adalah sebagai berikut :
1. Memberikan solusi alternatif peralatan rumah tangga untuk memasak tanpa bahan bakar, aman dan ramah lingkungan.
2. Menghemat pemakaian bahan bakar fosil dan energi listrik.
3. Mengurangi pemanasan global dengan upaya penggunaan energi yang ramah lingkungan.
4. Memberikan sumbangan aplikasi teknologi energi yang terbarukan dengan energi surya di Indonesia.
5. Memberikan alternatif peluang bisnis dimasa depan.
1.5 Sistematika Penulisan
Adapun sistematika penulisan pada tugas akhir ini adalah : BAB I PENDAHULUAN
Bab ini menjelaskan pendahuluan tentang studi kasus dan pemecahan masalah yang berisi antara lain : Latar belakang, batasan masalah, tujuan penelitian, manfaat penelitian , dan sistematika penulisan.
BAB II TINJAUAN PUSTAKA
Bab ini berisi dasar teori dari topik yang dikaji dan digunakan sebagai landasan dalam memecahkan masalah dan menganalisis permasalahan yang berkaitan dengan perpindahan panas, pemanfaatan energi surya dan jenis kompor surya.
BAB III METODOLOGI PENELITIAN
Bab ini berisi metode perancangan serta langkah yang dilakukan untuk mengidentifikasi permasalahan, beserta variabel-variabel yang akan diukur dan perlengkapan pengujian meliputi waktu dan tempat penelitian, peralatan pengujian, bahan pengujian, experimental set up, dan prosedur pengujian.
BAB IV DATA DAN ANALISIS DATA
Bab ini berisi tentang design, dimensi dan jenis bahan yang digunakan kompor surya. Selain itu bab ini berisi tentang ranacangan perhitungan kehilangan panas pada kompor surya dan perhitungan kehilangan panas
(23)
pada kaca kemudian analisis dari data hasil pengujian. Hasil analisis data akan disajikan dalam bentuk tabel dan grafik.
BAB V KESIMPULAN DAN SARAN
Bab ini berisi kesimpulan dari analisa yang dilakukan terhadap permasalahan dan saran mengenai penyempurnaan hasil penelitian untuk generasi berikutnya.
(24)
BAB II
TINJAUAN PUSTAKA
2.1 Perpindahan Panas
2.1.1 Perpindahan Panas Konduksi
Konduksi adalah transfer energi dari partikel yang memiliki energi lebih besar ke substansi dengan energi yang lebih rendah dan sebagai hasilnya terjadi interaksi antara partikel.[6]
Rumus Umum :
q
c= -k
. A .�
... (2.1) Dimana :
q
c = Laju perpindahan panas (W)A = Luas penampang dimana panas mengalir (m2)
dT/dx = Gradien suhu pada penampang, atau laju perubahan suhu T terhadap jarak dalam arah aliran panas x (K)
k = Konduktivitas termal bahan (W/m.K)
2.1.2 Teori Dasar Konveksi
Konveksi adalah bentuk dari transfer energi diantara permukaan padat dan fluida yang bergerak serta terkandung efek kombinasi konduksi dan fluida bergerak.[6]
Rumus Umum :
q
h = h.A.∆� ... (2.2)Dimana :
q
h = Laju perpindahan panas konveksi (W)h = Koefisien perpindahan panas konveksi (W/m2 K) A = Luas penampang (m2)
(25)
2.1.3 Perhitungan Panas Radiasi
Perpindahan panas radiasi adalah perpindahan panas yang terjadi tanpa melalui media perantara (padat dan fluida).
Persamaan untuk mencari perpindahan panas radiasi adalah sebagai berikut [6]:
qrad= A ( Ts4-Tsur4 ) ... (2.3)
dimana :
qrad = laju perpindahan panas radiasi (W)
= emisivitas bahan A = luas permukaan (m2)
= kontanta Stefan – Boltzmann (5,67 x 10-8 W/m2 K4) Ts = suhu permukaan (K)
Tsur = suhu lingkungan (K)
Radiasi yang dapat ditangkap oleh luasan kolektor, intensitas radiasi diperoleh dari alat ukur, dan dihitung permenit, sehingga energi radiasi dapat di hitung mengunakan rumus [3] :
Q = I A Δt ∈ ... (2.4) Dimana: Qrad = Energi Radiasi (J)
I = Intensitas radiasi (W/m2) A = Luas penampang kolektor(m2)
Δt = Selang waktu perhitungan (s) ∈ = Efisiensi Kaca (%)
2.2 Radiasi Surya
Matahari merupakan bintang yang dekat dengan bumi dan menyediakan energi yang dibutuhkan oleh kehidupan di bumi secara terus–menerus (renewable energy). Sumber energi berjumlah besar dan kontinu terbesar yang tersedia bagi umat manusia adalah energi surya dan energi elektromagnetik yang dipancarkan oleh matahari. Energi surya sangat aktif karena tidak bersifat polutif dan tidak dapat habis. Akan tetapi arus energi yang rendah mengakibatkan digunakannya
(26)
sistem dan kolektor yang permukaannya luas untuk mengumpulkan dan mengkonsentrasikan energi matahari ini.
Matahari adalah sebuah bulatan gas panas yang memiliki diameter 1,39 x 109 m dan berjarak sekitar 1,5 x 1011 m dari bumi. Matahari dianggap sebagai sebuah benda hitam yang memiliki suhu 5762 K. Suhu di pusat adalah 8 x 106 sampai 40 x 106 K dan memiliki densitas 100 kali dari air. Matahari terjadi karena reaksi fusi yang kontinu antara hidrogen dan helium.[2]
2.2.1 Teori Radiasi Surya Radiasi Pada Bidang Miring
Pada dasarnya data radiasi surya pada bidang miring jarang diperoleh. Karakteristik daripermukaan disekitarnya berbeda antara satu tempat dengan yang lainnya sehingga standarisasipengukurannya sulit dibuat.
Karena itu, radiasi total pada suatu permukaan miring biasanya dihitung. Radiasi total padapermukaan miring adalah jumlah dari radiasi komponen sorotan (IbT),
komponen sebaran (IdT), dankomponen pantulan (IrT).
IT = IbT + IdT + IrT[MJ/m2] ………..………(2.5)
Radiasi Langsung/Sorotan
Intensitas radiasi langsung atau sorotan perjam pada sudut masuk normal Ibn
adalah,
Ibn = Ib
cosθz[MJ/m 2
] ………(2.6)
θz = sudut zenith
Dengan demikian, untuk suatu permukaan yang dimiringkan dengan sudut β terhadap bidanghorisontal, intensitas dari komponen sorotan adalah,
Ibn = IbT
cosθT =
cosθr
cosθz
[MJ/m2] ………..……….(2.7)
θr disebut sudut masuk dan didefinisikan sebagai sudut antara arah sorotan pada
sudut masuknormal dan arah komponen tegak lurus (90o) pada permukaan bidang miring.
(27)
β
IbT
Ibn
Ibn
θz
θT Ib
Gambar 2.1 Radiasi sorotan tiap jam pada permukaan miring dari pengukuranIb
Radiasi Sebaran
Radiasi sebaran, yang disebut juga radiasi langit (sky radiation), adalah radiasi yangdipancarkan ke permukaan penerima oleh atmosfer, karena itu berasal dari seluruh bagian hemisfer.
Apabila dimisalkan, seperti yang sering terjadi, bahwa radiasi sebaran pada permukaan miringdinyatakan dengan,
IdT = Id 1,0+cos
2 [MJ/m 2
] ………..(2.8)
Dimana β adalah sudut miring dari permukaan miring dan Id menunjukkan
besarnya radiasisebaran perjam pada suatu permukaan horisontal. Radiasi Pantulan
Selain komponen radiasi langsung dan sebaran, permukaan penerima juga mendapatkanradiasi yang dipantulkan dari permukaan yang berdekatan dimana
jumlah radiasi yang dipantulkantergantung dari refleksi α dari permukaan yang
berdekatan itu, dan kemiringan permukaanyang menerima. Radiasi yang dipantulkan perjam, juga disebut radiasi pantulan, yang dijabarkandalam persamaan.
IrT = Ib+ Id 1−cos
2 [MJ/m
2
] ………(2.9)
Dimana reflektansi α dianggap 0,21-0,25 untuk permukaan tanpa salju dan 0,7
(28)
Gambar 2.2 Radiasi sinar matahari.[5]
2.2.2 Posisi Matahari
Untuk menghitung radiasi matahari langsung pada sebuah permukaan miring dari data radiasi pada sebuah permukaan horizontal, maka posisi matahari harus diketahui setiap saat. Posisi matahari juga digunakan untuk menentukan radiasi surya yang diteruskan melalui kaca, yang transmisivitas absorbsivitasnya berubah-ubah sesuai dengan sudut masuk matahari.
- Sudut lintang, Φ, adalah sudut lokasi bidang di permukaan bumi terhadap ekuator bumi dimana untuk arah ke utara diberi tanda positip. Nilai untuk sudut lintang ini : - 90 ≤Φ≤ 90.
- Sudut kemiringan, β, adalah sudut antara permukaan bidang yang
dimaksud terhadap horisontal ; 0 ≤ β≤ 180°.
- Sudut deklinasi matahari, , merupakan sudut kemiringan bumi terhadap
matahari akibat rotasi bumi pada arah sumbu axis bumi-matahari; -23,45°≤
≤23,45°.
Sudut deklinasi matahari dinyatakan dengan persamaan :
...( 2.10)
dimana n menyatakan nomor urut hari dalam satu tahun yang diawali dengan nomor urut 1 untuk tanggal 1 Januari.
365 284 360 sin 45 ,
23 n
(29)
N
S
δ
BUMI
MATAHARI
Gambar 2.3 Deklinasi matahari
- Sudut jam matahari, ω, adalah pergeseran sudut dari matahari ke arah timur/barat dari garis bujur lokal akibat rotasi bumi pada sumbunya. Besar pergeseran sudut tersebut 15° tiap jam .
- Sudut ketinggian matahari, α, adalah sudut antara radiasi langsung dari
matahari dengan bidang horisontal yang ditentukan berdasarkan persamaan : [5]
... (2.11)
- Sudut zenith, θz, adalah sudut antara radiasi langsung dari matahari dengan
garis normal bidang horisontal yang dinyatakan dengan persamaan :
... (2.12) - Sudut azimut (θA)
z z
A
sin cos
cos sin sin
cos ...(2.13)
cos cos cos sin sin
sin
sin sin cos cos cos
(30)
Gambar 2.4 Posisi sudut matahari[5]
2.3 Konveksi Paksa
Konveksi adalah perpindahan panas yang diakibatkan oleh aliran molekul fluida, sebagai medium perpindahan panas. Konveksi paksa adalah perpindahan panas yang dipaksa mengalir.[1]
Dalam menentukan koefisien konveksi, ada bilangan tanpa dimensi yang digunakan untuk mensederhanakan parameter yakni bilangan Nusselt (Nu) dan Bilangan Reynold,(Re) yakni :
Nu = ℎ ... (2.14) ReL = �
. .
� ... (2.15) Perhitungan bilangan Nu rata-rata untuk permukaan plat datar dimana fluida mengalir sejajar permukaan plat, yaitu
1.Untuk aliran laminar Re < 5x 105
Nu = 0,644 ReL0,5Pr1/3 ... (2.16)
2.Untuk aliran turbulen, 5x 105 < Re < 107
Nu = 0,037 ReL0,8Pr1/3 ... (2.17) P
Z
N
S W
E
A
Z Sudut Zenith
(31)
2.4 Konveksi Alamiah
Jika aliran fluida terjadi secara alami, sebagai akibat perpindahan panas yang terjadi. Konveksi ini disebut konveksi alamiah atau kadang disebut konveksi bebas dalam bahasa Inggris disebut natural convection atau free convection.
Asumsi yang umum digunakan untuk dapat menurunkan persamaan pembentuk aliran pada udara di sekitar plat vertikal ini adalah : aliran 2D, incompressibel, sifat fisik konstan. Untuk memunculkan efek dari perbedaan kerapatan sebagai gaya pendorong aliran fluida, maka pada persamaan momentum arah vertikal, gaya gravitasi harus diperhitungkan. Bilangan-bilangan tanpa dimensi yang sering digunakan untuk menghitung konveksi alamiah adalah [1]) :
RaL = �
2�� � −� 3
�2 Pr ... (2.18) Dimana : RaL = Rayleigh Number
g = gravitasi bumi. Ts = suhu permukaan Tr = suhu ruangan L = panjang
μ = viskositas dinamik (ρv ) Pr = Bilangan Prandl
2.4.1 Konveksi Alamiah Pada Plat Luar
Persamaan mencari bilangan Nusselt untuk konveksi alamiah pada plat luar telah diturunkan secara analitik, dengan asumsi bawah aliran adalah laminar. Namun faktanya, aliran tidak selalu laminar melainkan turbulent. Bilangan Nusselt pada plat vertikal dengan temperatur permukaan, Ts konstan dapat dirumuskan sebagai berikut :
Jika bilangan 10-1 < Ra < 1012 , maka bilangan Nusselt yang dipakai adalah [1] : �
= 0.825+ 0.387��
1/6
[1+(0.492/� )9/16]8/27 ... (2.19)
Jika bilangan Ra < 109, maka bilangan Nusselt yang dipakai adalah (Persamaan ini lebih akurat) .[1]:
�
= = 0.68 + 0.67��
1/4
(32)
Dimana : Pr = bilangan Prandtl
2.4.2 Konveksi Alamiah Pada Ruang Tertutup
H
g
Tc
TH
fluida
Pa
n
a
s
D
in
g
in
H
g
Tc
TH fluida
P
a
n
a
s
D
in
g
in
Gambar 2.5 Ruang tertutup yang tinggi dan rendah
Untuk ruang tertutup seperti pada gambar 2.5 dengan aspek rasio L/H > 1, rekomendasi Berkovsky dan Polekov (1997) dapat digunakan. Ruang dengan ketinggian 1 < L/H < 2, dan syarat tambahan RaH Pr/0,2 + Pr>103 berlaku [1] :
� = 0,18 �
0,2+� �� 0,29
... (2.21) Untuk ruang yang lebih tinggi lagi 2 L/H 10, Pr 105, dan 103 �� 1010 berlaku [1]:
� = 0,22 �
0,2+� �� 0,28
−0,25 ... (2.22) McGregor dan Emery (1969) merekomendasikan dua persamaan berikut untuk ruang tertutup dengan rasio ketinggian yang lebih besar lagi. [1]
� = 0,42�� 0,25 −0,3 ... (2.23) Syarat untuk persamaan ini adalah : 10 40, 1 � 2 × 104, dan
104 �� 107 kemudian untuk rasio yang lebih tinggi lagi,
� = 0,046�� 1/3 ... (2.24) Syarat untuk persamaan ini adalah : 1 40, 1 � 20, dan 106
(33)
Disini perlu diperhatikan bahwa bilangan Nu dan Ra semua dinyatakan dengan lebar ruang, yaitu H dan tinggi L.
Untuk ruang tertutup dengan rasio ketinggian kurang dari 1, atau ruang pendek seperti yang ditampilkan pada gambar 2.5, rekomendasi yang diajukan oleh Bejan dan Tien (1978) dapat digunakan [1]:
� = 1 + 1
362880 �� 2
... (2.25) Pada Gambar 2.6 dibawah ini, ditampilkan ruang tertutup dengan posisi dinding panas di bawah. Jika kasusnya seperti ini, pola aliran yang terjadi di dalam ruang akan sangat bervariasi dan sangat tergantung pada bilangan Rayleigh nya. Pola aliran yang terjadi tetap memutar, tetapi ada kemungkinan sumbu putaran lebih dari satu. Fenomena putaran di ruang tertutup yang lebih dari satu ini biasanya dikenal dengan istilah ruang Benard atau Benard cell. Nama ini disesuaikan dengan nama orang pertama yang mengamati dan melaporkannya tahun 1900. [1]
Panas Dingin
TH
TC
H
L Fluida
g
Gambar 2.6 Ruang tertutup
Jika fluida yang ada di ruangan tertutup ini adalah udara, maka persamaan yang diajukan oleh Jakob (1949) dapat digunakan [1]:
Rumus Umum :
25 , 0 195 , 0
Nu RaL untuk
5 4
10 4
10 RaL ... (2.26)
3 1 068 , 0
Nu RaL untuk 5 7
10 10
4 RaL ... (2.27)
Dimana :
(34)
Ra = Bilangan Rayleigh
Meskipun persamaan ini dikhususkan untuk udara tetapi masih dapat digunakan untuk gas yang lain selama bilangan Prandtl memenuhi 0,5Pr2. Sementara untuk jangkauan fluida selain gas Globe dan Dropkin (1959) mengajukan persamaan berikut [1]:
Rumus Umum :
074 , 0 3 1 Pr 069 , 0
Nu RaL ... (2.28)
Dimana :
Nu = Bilangan Nusselt Ra = Bilangan Rayleigh Pr = Bilangan Prandalt
Syarat bilangan Rayleigh agar persamaan ini berlaku adalah
9 5
10 7 10
3 RaL . Dan yang terbaru Holland dkk. (1976) mengajukan persamaan berikut untuk digunakan pada kasus ini [1]:
Rumus Umum :
1 18 1708 1 44 , 1 1 Nu 3 1 L L Ra Ra ... (2.29) Syarat penggunaan persamaan ini adalah RaL 105. Arti dari operator
]
[ adalah yang diambil hanya nilai positif. Jika nilai yang didalam kurung negative maka hasilnya sama dengan nol. Perhatikan operasi berikut [2] 2
tetapi [2] 0
Pada umumnya, solar kolektor plat datar mempunyai penutup kaca yang fungsinya meneruskan sinar matahari tetapi mengurangi panas terbuang ke lingkungan. Kemudian, solar kolektor dimiringkan untuk menangkap lebih banyak sinar matahari.Susunan absorber dengan penutup kaca akan membentuk ruang tertutup persegi yang miring dan didalamnya terjadi konveksi alamiah seperti pada gambar 2.7 berikut. [1]
(35)
L H
g
Tc
fluida
Kaca (ding in)
Abso rber (Pana
s)
TH
θ
Gambar 2.7 konveksi alamiah pada ruang tertutup yang miring
Pada gambar 2.7 ditampilkan sebuah solar kolektor plat datar yang dapat dimodelkan sebagai ruang tertutup persegi yang miring. Sebenarnya pada kolektor ini terdapat dua buah kaca, tetapi pada model ini hanya ditampilkan satu lapis. Asumsi dilakukan disini adalah perpindahan panas yang terjadi adalah dua dimensi dan dinding samping dari kolektor diisolasi dengan baik.
Pada kasus ini tidak banyak penelitian yang telah dilakukan. Tetapi rekomendasi yang diajukan oleh Holland, dkk (1976) dapat digunakan. [1]
� = 1 + 1,44 1−�� � �1708
+
1−1708�� � � � 1,8� 1,6 +
�� � � 1/3
18 −1
+
... (2.30)
Syarat persamaan ini adalah rasio lebar tehadap ketinggian cukup besar H/L 12, �� < 105, dan sudut kemiringan kurang dari 70o, ( 0< θ < 70o)
Sementara untuk ruang persegi yang miring dengan rasio lebar terhadap ketinggian H/L < 12, Catton (1978) mengusulkan menggunakan persamaan berikut :
Nu = Nuθ=0
Nuθ=90
Nuθ=0
θ/θcr
(36)
Syarat menggunakan persamaan ini adalah sudut kemiringan harus lebih kecil dari sudut kritis 0 < θ < θcr. Nu untuk sudut 0o dapat digunakan persamaan yang diajukan Holland,dkk(1976. Tetapi disini perlu kehati-hatian menggunakan parameter L dan H, jangan sampai tertukar. Sudut kemiringan kritis berbeda untuk masing-masing rasio untuk beberapa rasio ditampilkan pada tabel 2.1. [1]
Tabel 2.1. Sudut kritis ruang tertutup miring.
Rasio H/L Sudut Kritis, θcr
1 25o
3 53o
6 60o
12 67o
>12 70o
Jika Sudut kemiringan melebihi sudut kritis, maka rekomendasi oleh Ayyaswamy dan Catton (1973) dapat digunakan. [1]
Nu = Nuθ=90 sinθcr 0,25 ... (2.32) Persamaan ini berlaku untuk θcr <� < 90o dan semua H/L. Sementara jika kemiringannya melebihi dari 90o, Arnold, dkk(1974) dapat digunakan. [1]
Nu = 1 + Nuθ=90 −1 × � � ... (2.33)
Berlaku untuk sudut 90o< θ < 180o dan semua H/L.[1]
2.5 Efisiensi Termal
Dalam termodinamika, efisiensi termal adalah ukuran tanpa dimensi yang menunjukkan performa peralatan termal seperti mesin pembakaran dalam dan sebagainya. Panas yang masuk adalah energi yang didapatkan dari sumber energi. Output yang diinginkan dapat berupa panas atau kerja, atau mungkin keduanya. Jadi, termal efisiensi dapat dirumuskan dengan :[20]
... (2.34) Berdasarkan hukum pertama termodinamika, output tidak bisa melebihi input, sehingga
(37)
Dalam era ini, penggunaan sumber daya alam yang tidak dapat diperbaharui semakin meningkat seiring dengan meningkatnya populasi manusia, kemajuan teknologi dan lain-lain. Namun hal ini berbanding terbalik dengan ketersediaan sumber daya alam tersebut. Sehingga para ilmuwan telah mencoba mengembangkan potensi sumber daya alam yang dapat diperbarui contohnya air, angin dan energi surya. Pada dasarnya terdapat 2 macam pemanfaatan energi surya yaitu :
1. Pemanfaatan Fotovoltaic
Fotovoltaik (PV) adalah sektor teknologi dan penelitian yang berhubungan dengan aplikasi panel surya untuk energi dengan mengubah sinar matahari menjadi listrik. Karena permintaan yang terus meningkat terhadap sumber energi bersih, pembuatan panel surya dan kumpulan fotovoltaik telah meluas secara dramatis dalam beberapa tahun belakangan ini. Produksi fotovoltaik telah berlipat setiap dua tahun, meningkat rata-rata 48 persen tiap tahun sejak 2002, menjadikannya teknologi energi dengan pertumbuhan tercepat di dunia. Pada akhir 2007, menurut data awal, produksi global mencapai 12.400 megawatt. Secara kasar, 90% dari kapasitas generator ini meliputi sistem listrik terikat. Pemasangan seperti ini dilakukan di atas tanah (dan kadang-kadang digabungkan dengan pertanian dan penggarapan) atau dibangun di atap atau dinding bangunan, dikenal sebagai Building Integrated Photovoltaic atau BIPV.[9]
2. Pemanfaatan Termal
Terdapat 9 pemanfaatan termal terbesar yang sudah dilakukan dan diterapkan di beberapa negara yaitu:
Solar Water Heater (Pemanas air dengan Energi Surya)
Alat yang digunakan untuk memanaskan air dengan menggunakan energi surya. Prinsip kerjanya adalah dengan menangkap panas matahari melalui pipa absorber dan selanjutnya panas matahari diteruskan ke tabung air dengan perpindahan panas secara konduksi.
(38)
Gambar 2.8 Solar Water Heater[11] Keterangan Gambar 2.6 :
1.Absorber
Fungsinya sebagai pengumpul panas yang diteruskan ke tabung air. 2.Tabung air
Fungsinya untuk menampung air yang akan dipanasi oleh absorber dengan perpindahan panas secara konduksi
Kompor Surya (Memasak dengan Energi Surya)
Kompor Surya adalah alat yang hanya menggunakan energi surya untuk memasak. Perkembangan penggunaan Kompor Surya ini telah meluas terutama di negara India yang memiliki radiasi matahari rata-rata 600 W/m2(Buddhi S.Dharma : 2010). Kompor Surya dapat digunakan memasak secara langsung maupun tidak langsung. Untuk memasak secara tidak langsung, diperlukan thermal storage yang menyimpan panas selama siang hari untuk dipakai memasak pada malam hari. Kompor Surya juga memiliki berbagai bentuk tipe misalnya : Kompor Surya tipe parabola, Kompor Surya tipe panel dan lain-lain. Buddhi S. Dharma (2003 : 2) menggunakan Kompor surya jenis box dan mengunakan thermal storage untuk dapat menyimpan energi panas yang akan digunakan untuk memasak beras sebagai pengujian pada malam hari dan bahan yang dia digunakan untuk thermal storage adalah jenis Acetanilide dengan melting point 120oC.
(39)
Keterangan Gambar 2.7 : 1.Reflektor
Fungsinya untuk memancarkan sinar matahari ke pusat vessel yang bertujuan untuk memanaskan vessel.
2.Vessel
Fungsinya sebagai wadah untuk menampung makanan.
Solar Driers( Pengering dengan Energi Surya)
Solar driers adalah alat yang digunakan untuk mengeringkan makanan dengan menggunakan bantuan panas matahari.Prinsip kerjanya yaitu dengan menangkap panas matahari melalui absorber selanjutnya panas diteruskan ke kotak pengering dengan perpindahan panas secara konduksi dan konveksi.
Gambar 2.10 Solar Driers.[12] Keterangan Gambar 2.8 :
1. Turbine roof Ventilator
Fungsinya untuk mensirkulasikan udara agar tidak terjadi kelembaban. 2. Kotak Pengering
Fungsinya sebagai wadah untuk menampung makanan yang akan dikeringkan melalui perpindahan panas melalui absorber.
3. Absorber
(40)
2.7 Kompor surya
2.7.1 Sejarah Kompor Surya
Saat ini, masih ada manusia yang belum mengetahui cara memasak makanan. Sebagian orang makan makanan dalam kondisi mentah. Kemudian manusia menemukan bahwa api bisa dikendalikan dan digunakan untuk memasak makanan. Api pada dasarnya adalah tenaga surya yang disimpan dalam kayu. Melihat cara ini, cara memasak dengan kayu adalah metode pertama memasak dengan energi surya di bumi ini.
Awal memasak dengan energi surya dapat ditemukan dari beberapa cerita terisolasi di masa lalu. Kaum Esseni, suatu sekte awal Yahudi, membuat wafer lembut dengan memanaskan wafer pada tanah yang tumbuh biji-bijian pada bebatuan diatasnya kemudian biji-bijian tersebut dipanaskan oleh matahari padang pasir. Tujuannya adalah agar wafer tidak terlalu panas.
Orang yang pertama mengetahui Kompor surya adalah Horase de Saussure, seorang naturalis Swiss. Dia memasak buah-buahan dalam Kompor surya tipe kotak yang dapat mencapai suhu 190 ° F. Kemudian orang menganggapnya sebagai kakek dari Kompor surya .
Selama waktu ini, sudah banyak orang yang mulai menggunakan Kompor surya . Di India, seorang tentara Inggris mempatenkan Kompor surya yang cukup canggih dan dikenal dengan nama solar chef. Pada tahun 1894, ada sebuah restoran di Cina yang melayani makanan yang dimasak dengan energi surya. Ada juga cerita tentang seorang kapten laut yang menciptakan Kompor surya yang bisa digunakan pada perjalanan panjang.[8]
Kompor surya yang pertama kali diakui adalah milik seorang berkebangsaan Amerika yang bernama Barbara Kerr dari Arizona .Prinsip kerja Kompor surya -nya adalah menyerap energi solar dan mengkonversinya menjadi panas serta memerangkapnya dalam ruang tertutup (Abhishek Saxenaa : 2011-2)
Pada tahun 1950-an PBB dan badan-badan pendanaan memulai penelitian untuk merancang Kompor surya yang dapat mengurangi
(41)
ketergantungan pada bahan bakar. Sejumlah insinyur disewa untuk mempelajari aspek yang berbeda dari desain Kompor surya . Studi ini menyimpulkan bahwa Kompor surya yang dibangun tidak hanya dapat memasak makanan secara menyeluruh dan bergizi, tetapi cukup mudah untuk membuat dan digunakan.
PBB kemudian mensponsori studi dan program untuk memperkenalkan Kompor surya ke budaya kaum primitif. Upaya ini terbukti tidak berhasil. Dalam suatu studi, Sebanyak 500 Kompor surya diberikan ke sebuah kampung pengungsi. Tiga bulan kemudian mereka kembali menggunakan kayu bakar. Para ilmuwan sosial menyimpulkan bahwa metode memasak dengan Kompor surya tidak terlalu menarik perhatian dan kaum primitif tidak mau beradaptasi dengan metode memasak ini.
Sehingga PBB,menyimpulkan bahwa Kompor surya bukan pilihan yang layak dan semua dana untuk Kompor surya dihentikan.Karena mereka merasa desain yang dipromosikan terlalu rumit. Juga, kompor terlalu mahal bagi pengguna yang dituju sehingga mereka merasa bahwa banyak pekerjaan yang dibutuhkan untuk mendesain Kompor surya .
Baru pada tahun 1987, sebuah demonstrasi besar–besaran mendukung agar Kompor surya digunakan di dataran tinggi Bolivia, suatu daerah di mana kayu sudah langka. Dua organisasi, Pillsbury Corporation dan sebuah organisasi non-pemerintah yang disebut Meals for Millions,, bersama-sama mensponsori demonstrasi memasak dan kemudian mengajarkan orang desa bagaimana membangun Kompor surya dengan bahan lokal. Pada tahun 1988, Pillsbury, bekerjasama dengan Foster Parents (sekarang Save the Children) mensponsori sebuah proyek serupa di Guatemala. Proyek ini merupakan proyek awal PBB dan kemudian dimulailah aliran proyek-proyek tersebut di seluruh dunia yang terus mengalir hingga saat ini.[8]
(42)
BAB III
METODOLOGI PENELITIAN
3.1 Objek Penelitian
Objek Penelitian merupakan kompor surya tipe kotak yang dilengkapi dengan absorber miring.
3.2 Parameter Penelitian
Parameter penelitian adalah temperatur dan intensitas radiasi matahari.
3.3 Waktu dan Tempat
Penelitian dilakukan di lantai 4 Magister Teknik Mesin yang terletak pada koordinat 3,43 oLU dan 98,44 oBT. Lama Penelitian diperkirakan selama 3 bulan.
3.4 Peralatan Pengujian
Adapun beberapa alat pengujian yang digunakan adalah : 1. Komputer
Digunakan untuk menyimpan dan mengolah data yang telah didapatkan dari Hobo Microstation data logger dan Agilient 34972 A.
(43)
2. Agilient 34972 A
Alat ini dihubungkan dengan termo couple yang dipasang pada titik-titik yang akan diukur temperaturnya,setelah itu akan disimpan ke dalam alat ini, setelah itu dipindahkan ke komputer untuk dapat diolah datanya.
Gambar 3.2 Agilient 3 a 972 A Sumber : Lab pendingin Teknik Mesin USU Dengan Spesifikasi :
a. Daya 35 Watt
b. Jumlah Saluran Termokopel 20 buah c. Tegangan 250 Volt
d. Mempunyai 3 saluran utama
e. Dapat memindai data hingga 250 saluran per detik f. Mempunyai 8 tombol panel dan sistem control
g. Fungsional antara lain pembacaan suhu Termokopel,RTD dan Termistor,arus listrik AC
3. Hobo Microstation Data Logger
Alat ini di hubungkan ke data logger untuk kemudian dihubungkan ke komputer untuk di olah datanya. Terdapat beberapa alat ukur pada Hobo Microstation data logger yaitu :
1. Pyranometer
Alat ini digunakan untuk mengukur radiasi matahari pada suatu lokasi.
2. Wind Velocity Sensor
Alat ini digunakan untuk mengukur kecepatan angin
3. Ambient Measurement apparatus
(44)
4. T and RH Smart Sensor
Alat ini digunakan untuk mengukur kelembaban
Gambar 3.3 Hobo Microstation data logger Sumber : Lab pendingin Teknik Mesin USU
Dengan Spesifikasi :
a. Skala pengoperasian : 20 o C -50 o C dengan baterai alkalin 40 o C -70 o C dengan baterai lithium b. Input Processor : 3 buah sensor pintar multi channel
monitoring
c. Ukuran : 8,9 cm x 11,4 cm x 5,4 cm
d. Berat : 0,36 Kg
e. Memori : 512 Kb Penyimpanan data nonvolatile flash.
f. Interval Pengukuran : 1 detik – 18 jam (tergantung pengguna)
(45)
4. Kompor Surya
L’ H’
g
Tc Fluida udar a
Kaca (ding in)
Abso rber (Pana
s)T H
θ
g
Kaca (dingin)
g Tc
H
TH
Absorber (Panas)
Absorber Miring
Box Solar Cooker
Gambar 3.4 Kompor Surya Prinsip kerja :
Adapun prinsip kerja dari kompor surya ini yakni seperti konsep peristiwa efek rumah kaca. Sinar matahari diteruskan oleh kaca kemudian diserap oleh kolektor yang berwarna hitam (absorber) sehingga suhunya meningkat. Kaca berfungsi menahan panas tetap berada didalam ruang sehingga suhu ruangan menjadi naik dan dapat digunakan untuk memasak air.
Absorber miring berfungsi menangkap sinar matahari dan memasok udara panas ke box solar cooker atau tempat bahan (air) dimasak dengan prinsip konveksi natural. Adapun prinsip konveksi alamiah yang
(46)
telah dijelaskan pada bab 2 yakni udara yang mengenai plat panas maka udara disekitar plat akan mengalami kenaikan suhu dan massa jenisnya menjadi turun sehinggga udara tersebut mengapung. Prinsip ini juga terjadi pada ruang tertutup yang salah satu dindingnya memiliki perbedaan suhu maka akan terjadi aliran fluida. Absorber yang telah menyerap sinar matahari memanasi udara disekitar absorber kemudian udara tersebut menjadi panas dan massa jenis udara menurun sehingga udara tersebut mengapung menuju Box Solar Cooker. Kemudian, udara yang suhunya lebih rendah turun untuk dipanasi oleh absorber sehingga temperatur naik dan udara mengalir ke Box solar Cooker sehingga terciptalah aliran fluida didalam ruangan kompor surya tersebut.
5. Panci Stainless Steel
Panci ini digunakan untuk wadah memasak air. 6. Gelas Ukur
Gelas ukur digunakan untuk mengukur volume air.
3.5 Bahan Pengujian
Adapun beberapa bahan yang digunakan untuk pengujian yaitu : 1. Air (H2O).
Air adalah substansi kimia dengan rumus kimia H2O: satu molekul air
tersusun atas dua atom hidrogen yang terikat secara kovalen pada satu atom oksigen. Air bersifat tidak berwarna, tidak berasa dan tidak berbau pada kondisi standar, yaitu pada tekanan 100 kPa (1 bar) and temperatur 273,15 K (0 °C). Zat kimia ini merupakan suatu pelarut yang penting, yang memiliki kemampuan untuk melarutkan banyak zat kimia lainnya, seperti garam-garam, gula, asam, beberapa jenis gas dan banyak macam molekul organik.Pada Percobaan ini,Air digunakan sebagai bahan utama pengujian
2. Kayu
Bahan ini digunakan sebagai kerangka luar dari pada box solar cooker yang akan dibuat. Juga digunakan sebagai isolator .
(47)
Gambar 3.5 Kayu.[14]
3. RockWool
Bahan ini digunakan sebagai lapisan isolator,digunakan untuk mencegah panas dari box solar cooker hilang keluar. Jenis Rock Wool yang dipakai adalah jenis Wire Mesh yang memiliki konduktivitas 0.042 �
�
Gambar 3.6 Rockwool 4. Kaca
Bahan ini digunakan sebagai jalur masuknya radiasi matahari. Digunakan jenis double glasses,untuk meningkatkan performance dari box solar cooker
(48)
Gambar 3.7 Kaca[15]
5. Sterofoam
Gambar 3.8 Sterofoam 6. Plat Aluminium
Bahan ini digunakan sebagai absorber. Plat Aluminium yang memiliki konduktivitas yang bagus dan di beri cat hitam agar radiasi yang masuk pada box solar cooker akan diserap sepenuhnya oleh plat aluminium
Gambar 3.9 Pelat Aluminium[16] 3.6 Experimental Setup
Pengujian dimulai dengan menghubungkan kabel-kabel termokopel ke agilient dan kemudian sisi termokopel lainnya dihubungkan ke panci pelat absorber,kaca,dan dinding untuk memperoleh data temperatur,setelah itu, flash
(49)
disk kemudian dihubungkan ke agilient untuk dibaca. Setelah agilient membaca temperatur selama waktu yang telah diset, flash disk dicabut dan dibaca dalam bentuk Microsoft Excel pada komputer.
L’ H’
g
Tc Fluida udar a Kaca (dingi n) Abso rber (Panas )T H θ g Kaca (dingin) g Tc H L
TH Absorber (Panas)
Absorber Miring Box Solar Cooker PC Ambient measurement apparatus Micro station data logger Pyranometer
T and RH Smart sensors Wind velocity
sensor
Data logger
Gambar 3.10 Experiment Setup Adapun beberapa parameter yang akan diukur ialah :
1. Temperatur air (T4) dan Temperatur ruangan (T3) Dapat diambil lebih dari 1 titik pengujian.
2. Temperatur plat (Tp)
Ini adalah Temperatur plat absorber. Data diambil selama proses memasak yakni pada titik T5 dan T8
3. Temperatur kaca (Tk)
Ini adalah Temperatur kaca. Data diambil selama proses memasak yakni pada titik T1, T2, T6 dan T7.
4. Radiasi Surya (Ga)
Ini menunjukkan seberapa besar radiasi solar pada 1 hari dalam 1 m2. Biasanya data di hitung setiap jam,dari jam 08:00-17:00 , kemudian dirata-ratakan sehingga didapatkan radiasi solar per hari.
5. Waktu (t)
Parameter ini digunakan untuk mengetahui berapa lama air mencapai temperatur maksimum selama proses pengujian.
T4 T5 T7 T6 T8 T3 T1 T2 Keterangan :
T1 = Temperatur kaca dalam datar T2 = Temperatur kaca luar datar T3 = Temperatur ruangan T4 = Temperatur air
T5 = Temperatur plat absorber datar T6 = Temperatur kaca dalam miring T7 = Temperatur kaca luar miring T8 = Temperatur plat absorber miring
(50)
3.7 Prosedur Pengujian
Adapun prosedur pengujian yang akan dilakukan adalah :
1. Dipersiapkan kompor surya beserta wadah yang berisi air pada jam pengujian yaitu jam 08:00
2. Parameter-parameter yang akan diukur dihubungkan ke data logger dan Komputer
3. Agilient dihidupkan serta hubungkan termokopel ke agilient 4. Ujung termokopel yang lain dihubungkan ke bagian plat dan Air. 5. Kemudian flash disk dihubungkan ke agilient untuk mengambil data
dari termokopel
6. Lakukan pengujian sampai sekitar 15.30 atau 16.00 ,tergantung kondisi cuaca,kemudian flash disk dicabut dari agilient dan datanya dilihat dikomputer.
(51)
Berikut tahapan diagram alir proses pengerjaan skripsi :
Gambar 3.11 Diagram Alir Kesimpulan
Perhitungan dan Diskusi Design Kompor Surya
Pabrikasi design Kompor surya
Test Performansi Kompor Surya
Percobaan
Kompor dilengkapi absorber miring Dengan volume air : 1 liter, 2 liter,3 liter
Pengambilan data HOBO dan Agilent
Analisa hasil percobaan
buku referensi, Jurnal, internet
mulai studi literatur
Selesai Hasil
Ya
(52)
BAB IV
DATA DAN ANALISA DATA
4.1 Design Kompor Surya
Gambar 4.1 Rancangan Kompor surya Keterangan gambar 4.1 :
1) Dinding kayu (tebal 15 mm) 2) Polystyrene (tebal 40 mm) 3) Rockwool ( tebal 50 mm)
4) Plat aluminium tipe A380 (tebal 2 mm) 5) Kaca tipe plat ( tebal 5 mm)
(53)
4.2 Rancangan Perhitungan Kehilangan Panas Kompor Surya Diketahui :
Kecepatan Udara diperoleh dari Hobo(v) = 1,56 /
Kkayu = 0,19 W/m. K Krockwoll = 0,042 W/m. K
Kpolysterene = 0,036 W/m. K
Kkaca = 1,4 W/m. K
Kaluminium = 237 W/m. K
T Lingkungan(Te) = 25 oC + 273 =298 K T Akhir (Ts) = 130 oC + 273 = 403 K Selanjutnya dihitung kehilangan panas pada solar box cooker
Dalam perhitungan ini kompor surya diasumsikan dibagi kedalam 2 bagian yakni bagian 1 yaitu kotak persegi dan bagian 2 yaitu kotak yang dilengkapi absorber miring.
Bagian 1
A1,kayu
A1,polystrene
A1,rockwool
A1,aluminium A4,kayu
A4,polystrene A4,rockwool A4,aluminium
A5,kayu A5,polystrene
A5,rockwool A5,aluminium A6,kaca
(54)
Luas Permukaan sisi kompor surya yang mengalami perpindahan panas dari dalam kompor ke lingkungan pada body 1, yakni :
A1,kayu = 0,485x0,785 = 0,380725 m2
A1,polystyrene = 0,410x0,730 = 0,2993 m2
A1,rockwool = 0,360x0,638 = 0,22968 m2
A1,aluminium = 0,358x 0,586 = 0,209788 m2
A4,kayu = 0,157x0,785 = 0,123245 m2
A4,polystyrene = 0,157x0,730 = 0,11461 m2
A4,rockwool = 0,157x0,638 = 0,100166 m2
A4,aluminium = 0,207x0,586 = 0,121302 m2
A5,kayu = 0,800x0,800 = 0,64 m2
A5,polystyrene = 0,770x0,770 = 0,5929 m2
A5,rockwool = 0,690x0,690 = 0,4761 m2
A5,aluminium = 0,590x0,590 = 0,3481 m2
Akaca = 0,590 x 0,590 = 0,3481 m2
1. Mencari koefisien konveksi permukaan dinding luar (bagian 1) melalui udara lingkungan,
Te = 25 oC
Hitung bilangan Reynold Rumus = Re = ρ .v.l
ϻ
Dimana : Re = Bilangan Reynold
ρ = Massa Jenis (kg/m3)
v = Kecepatan Udara (m/s) = 1,56 m/s
μ = Viskositas (N.s/m2)
l = lebar atau tinggi kotak box (m) = 0,8 m
Properti udara dievaluasi pada Te = 25 oC atau 298 K. Te (K) ρ
(kg/m3) ϻ*10
7 (N.s/m2)
V*106 (m/s)
k*103 (W/m.k)
α
(m2/s) Pr
250 1,3947 159,6 11,44 22,3 15,9 0,72 298 1,17073 183,6 15,712 26,14 22,236 0,70752 300 1,1614 184,6 15,89 26,3 22,5 0,707 Maka,
(55)
Re = ρ .v.l1 μ Re = 1,17073
kg
m3 1,56m s 0,8 m
181,1 10−7 N.s
m2 Re = 79.579,169
Mencari bilangan Nusselt
Karena bilangan Re = 79.579,169< 5 x 105 maka tergolong aliran laminar Rumus bilangan Nusseltyang dipakai adalah
Rumus : � 1 = 0,664 ��0,5 � 13
� 1 = 0,664 79.579,1690,5 0,708
1 3
� 1 = 166,379
Mencari koefisien konveksi Udara lingkungan (ℎ1)
Rumus : � 1= h1.l k
Dimana : � 1= bilangan Nusselt rata-rata h1 = koefisien konveksi (W/m2.K)
k = konduktivitas termal (W/m.K)
l = tinggi atau lebar (m)
166,379= h1 0.8
26,14 10−3 ℎ1= 5,436 W/m2K
2. Perhitungan Kehilangan Panas Pada dinding.
Dalam menghitung kehilangan panas total pada dinding yaitu penjumlahan panas yang hilang pada keempat sisi kotak, yaitu :
Qdinding total = Qd1 + Qd2 + Qd3 + Qd4
� ∶ = .� (�� − � )
1 = 1
.� � � +
2
� +
3
� � � � +
4
� +
1
(56)
Penyelesaian :
1 = � � −�∞
.�1 � +
� �
.�1 � � +
� � �
.�1 � � � + �
.�1 � + 1
ℎ1.�1 �
1 =
403−298
0.002 237 0,209788 +
0.05 0,042 0,22968 +
0.04 0,036 0,2993 +
0.015 0,19 x 0,380725 +
1 5,436 x 0,380725 �
1 =11,06 W
Dari data yang ada diketahui bahwa Qd1 = Qd2 = Qd3, maka dicari Qd4 sebagai
berikut :
4 = � � −�∞
.�4 � +
� �
.�4 � � +
� � �
.�4 � � � + �
.�4 � + 1
ℎ1.�4 �
4
= 0.002 403−293
237 0,121302 +
0.05
0,042 0,100166 +
0.04
0,036 0,11461 +
0.015
0,19 0,123245 � +
1
5,436 0,123245 �
4 =4,43 W
Qtotal dinding sebagai berikut :
Qdinding total = Qd1 + Qd2 + Qd3 + Qd4 =3.Qd1 + Qd4
= (3 x 11,06 W) + 4,43 W = 37,609 W
Maka, Panas total yang hilang melalui dinding adalah 37,609 W 3. Kehilangan Panas Pada Alas
� � = � � −�∞
.�5 � +
� �
.�5 � � +
� � �
.�5 � � � + �
.�5 � + 1
ℎ1.�1 �
� � = 0.002 403−298
237 0,3481 + 0.05 0,042 0,4761 +
0.04 0,036 0,5929 +
0.015 0,19 0,64 � +
1 5,436 0,64 � � � = 21,942 W
(57)
4. Mencari koefisien Konveksi dari kaca dalam (II) yang dipanasi ke kaca luar(I). Diketahui :
Panas Dingin
TH
TC
H
L
Fluida g
TkacaII (TH) = 130 oC = 403 K
TkacaI (Tr) = 25 oC = 298 K
g = 9,81 m/s
β = 1/Tr = 1/298 = 0,00335
L = 0,015 m
Asumsi : perpindahan panas terjadi secara konveksi pada ruangan tertutup.
Properti udara dievaluasi pada temperatur film, Tf = (TH + Tr)/2 = 77,5oC =
350,5 K. Te (K)
ρ (kg/m3)
μ*107 (N.s/m2)
v*106 (m/s)
k*103
(W/m.k)
α*106 (m2/s)
Pr
300 1,1614 184,6 15,89 26,3 22,5 0,707
350,5 0,99334 208,436 20,9703 30,037 29,974 0,69993
350 0,9950 208,2 20,92 30 29,9 0,7
Mencari bilangan grashof yang dirumuskan dengan :
=�
2��(� − �) 3
�2
=
0,993342 kg
m3 x 9.81
m
s2 x 0.00336 x (403−298)K x 0,0153m
(208,436x 10−7)2
= 2,65 104
Mencari Bilangan Rayleigh, �� dengan rumus berikut :
�� = �
�� = 2,65 104 0,69993
(58)
Mencari bilangan Nusselt, Nu dengan rumus berikut : � = 0,195 ��0.25
� = 2,28
Maka, Koefisien konveksinya adalah ℎ= �
ℎ= 2,28 30,037 10
−3 0,015
ℎ2= 4,558 W/m 2
5. Mencari koefisien Konveksi dari permukaan kaca luar (I) pada pintu kaca 1. Diketahui : L = 0,59 m
Asumsikan permukaan luar kaca terjadi konveksi paksa akibat aliran angin dengan kecepatan v = 1,56 m/s.
Properti udara dievaluasi pada Te = 25 oC atau 298 K. Te(K) ρ(kg/m3) μ*10-7
(N.s/m2)
v*10-6 ( )
k*10-3 (W/m.k)
*10-6
(m2/s) Pr 250 1,3947 159,6 11,44 22,3 15,9 0,72
298 1,17073 183,6 15,712 26,14 22,236 0,708
300 1,1614 184,6 15,89 26,3 22,5 0,707
Menghitung Bilangan Reynold, Re dengan rumus berikut : Re = ρ .v.l2
μ
Re = 1,17073
kg
m3 1,56m s 0,59 m
183,6 10−7 N.s
m2 Re = 58.689
Mencari bilangan Nusselt
Karena bilangan Re = 58.689< 5 x 105 maka tergolong aliran laminar Rumus bilangan Nusseltyang dipakai adalah
Rumus : � 3 = 0,664 ��0,5 � 13 �
3 = 0,664 58.6890,5 0,708
1 3
�
(59)
Mencari koefisien konveksi Udara lingkungan (ℎ3)
Rumus : � 3= h3.l k
Dimana : � 3= bilangan Nusselt rata-rata h3 = koefisien konveksi (W/m2.K)
k = konduktivitas termal (W/m.K)
l = tinggi atau lebar (m)
142,883= h3 0,56
26,14 10−3 ℎ3= 6,33 W/m2K
6. Kehilangan Panas Pada Kaca
Maka kehilangan total panas melalui kaca dapat dihitung dengan rumus sebagai berikut :
���,1 = � −� .� ��� ���
���+
1
ℎ2+
��� ���+
1
ℎ3
h2 = koefisien konveksi permukaan kaca dalam (W/m2K)
h3 = koefisien konveksi permukaan luar (W/m2K)
���,1 = kehilangan panas kaca pintu 1 (W)
���,1 =
403−298 .0,3481
0,005 1,4 +
1
4,558 +
0,005 1,4 +
1 6,33
���,1 = 95,059 W
7. Mencari Total Kehilangan Panas pada body 1, Qtotalbody1 adalah
Q total body1 = Q dinding + Q alas + Q kaca,1
Q total body1 = 37,609W + 21,942 W + 95,059 W
Q total body1 = 154,61 W
(60)
Bagian 2
A9,ka yu
A9,po lystr
ene
A9,ro ckwo
ol
A9,alum inium
A7,ka yu A7,po
lystre ne
A7,ro ckwo
ol
A7,al umin
ium
A10, kayu
A10,po lystr
ene
A10,ro ckwo
ol
A10, alum
iniu m
A11, kaca
60o
Gambar 4.3 Body 2 Kompor Surya
Diketahui Luas penampang sisi lapisan kompor surya yang mengalami perpindahan panas dari dalam kompor ke lingkungan, yakni :
A7,kayu = 1,113 x ,0,29 = 0,3227 m2
A7,polystyrene = 1,083 x 0,24 = 0,2599 m2
A7,rockwool = 1, 003 x 0,2 = 0,2006 m2
A7,aluminium = 0,9 x 0,15 = 0,135 m2
A9,kayu = 0,485x 0,29 = 0,1406 m2
(61)
A9,rockwool = 0,360x 0,2 = 0,072 m2
A9,aluminium = 0,358x 0,148 = 0,0529 m2
A10,kayu = 1,113 x 0,8 = 0,8904 m2
A10,polystyrene = 1,083 x 0,77 = 0,8339 m2
A10,rockwool = 1,003 x 0,69 = 0,692 m2
A10,aluminium = 0,903 x 0,59 = 0,5327 m2
A11,kaca = 0,95 x 0,59 = 0,9025 m2
8. Mencari Koefisien konveksi pada kotak bagian absorber miring (body 2). a. Mencari koefisien konveksi permukaan dinding luar (body 2) melalui udara
lingkungan, Te = 25 oC
Hitung bilangan Reynold Rumus = Re = ρ .v.l
ϻ
Dimana : Re = Bilangan Reynold
ρ = Massa Jenis (kg/m3) v = Kecepatan Udara (m/s) μ = Viskositas (N.s/m2)
l = lebar atau tinggi kotak box (m) = 0,29 m
Properti udara dievaluasi pada Te = 25 oC atau 298K. Te(K) ρ(kg/m3) μ*10-7
(N.s/m2)
v*10-6 ( )
k*10-3 (W/m.k)
*10-6
(m2/s) Pr 250 1,3947 159,6 11,44 22,3 15,9 0,72
298 1,17073 183,6 15,712 26,14 22,236 0,708
300 1,1614 184,6 15,89 26,3 22,5 0,707
Maka,
Re = ρ .v.l ϻ Re = 1,17073
kg
m3 1,56m s 0,29 m
183,6 10−7 N.s
m2 Re = 28.847
Mencari bilangan Nusselt
(62)
Rumus bilangan Nusseltyang dipakai adalah Rumus : � = 0,664 ��0,5 �
1 3
� = 0,664 28.8470,5 0.708
1 3
� = 100,174
Mencari koefisien konveksi Udara lingkungan (ℎ4)
Rumus : � 4= h4.l k
Dimana : � 4= bilangan Nusselt rata-rata h4 = koefisien konveksi (W/m2.K)
k = konduktivitas termal (W/m.K)
l = tinggi atau lebar (m)
100,174= h4 0,29
26,14 10−3 ℎ4= 9,03 W/m2K
b. Mencari koefisien Konveksi dari kaca bagian dalam (II) ke kaca luar (I). Diketahui : Tpermukaan (Ts) = 130 oC = 403 K
Tkaca (Tr) = 25 oC = 298 K g = 9,81 m/s2
β = 1/Tr = 1/298 = 0,00336
L = 0,015 m
H = 0,9 m
θ = 60
φ = 30
Asumsi : perpindahan panas terjadi secara konveksi pada ruangan tertutup yang dimiringkan.
(63)
Properti udara dievaluasi pada temperatur film, Tf = (Tabsorber + Tkaca)/2 =
77,5 oC = 350,5 K. Te (K)
ρ (kg/m3)
μ*107
(N.s/m2)
v*106 (m/s)
k*103 (W/m.k)
α*106
(m2/s)
Pr
300 1,1614 184,6 15,89 26,3 22,5 0,707
350.5 0,99334 208,436 20,9703 30,037 29,974 0,69993
350 0,9950 208,2 20,92 30 29,9 0,7
Mencari bilangan grashof yang dirumuskan dengan :
=�
2.�.� �.� � − � . 3
�2
=
0,99334 kg
m3 x 9.81
m
s2 x cos 60 x 0.00336 x (403−298)K x 0,015 3m
(208,436 x 10−7)2
= 13.261
Mencari Bilangan Rayleigh, �� dengan rumus berikut :
�� = �
�� = 13.261 0,69993
�� = = 9.281,3
Mencari bilangan Nusselt dengan rumus berikut :
� = 1 + ( 1
362880)( �� ) sin� 0,25
= 1 + ( 1 362880)(
0,015
0,9 9.281,3) sin 60
0,25
� = 1,0
Maka, Koefisien konveksinya adalah ℎ= �
ℎ= 1,0 30,037
0,015
ℎ5= 2,003 W/m2
9. Perhitungan Kehilangan Panas pada dinding
Dalam menghitung kehilangan panas total pada dinding yaitu penjumlahan panas yang hilang pada semua sisi kotak, yaitu :
(64)
� ∶ = .� (�� − � )
1 = 1
.� � � + 2 � + 3 � � � � + 4 � + 1 ℎ1 Penyelesaian :
7 = � � −�∞
.�7 � +
� �
.�7 � � +
� � �
.�7 � � � +
�
.�7 � + 1
ℎ4.�7 �
7 =
403−298
0.002 237 0,0.135+
0.05 0,042 0,2006 +
0.04 0,036 0,2599 +
0.015 0,19 x 0,3227 +
1 9,03 x 0,3227 �
7 =9,524 W
Dari data yang ada diketahui bahwa Qd7 = Qd8, maka dicari Qd9 sebagai
berikut :
9 = � � −�∞
.�9 � +
� �
.�9 � � +
� � �
.�9 � � � +
�
.�9 � + 1
ℎ1.�9 �
9=
403−298
0.002 237 0,529+
0.05 0,042 0,072+
0.04 0,036 0,0984+
0.015 0,19 0,1406 � +
1 5,436 0,1406 �
9 = 3,536 W
Qtotal dinding sebagai berikut :
Qdinding total = Qd7 + Qd8 + Qd9 =2.Qd7 + Qd9
= (2 x 9,524 W) + 3,536 W = 22,584 W
Maka, Panas total yang hilang melalui dinding adalah 22,584 W 10.Kehilangan Panas Pada Alas
� � = � � −�∞
.�10 � +
� �
.�10 � � +
� � �
.�10 � � � + �
.�10 � + 1
ℎ1.�1 �
� � = 0.002 403−298
237 0,53277 + 0.05 0,042 0,692 +
0.04 0,036 0,8339 +
0.015 0,19 0,89 � +
1 5,436 0,89 � � � = 29,83 W
(65)
11.Kehilangan Panas Pada Kaca
Kehilangan total panas melalui kaca dapat dihitung dengan rumus sebagai berikut :
���,2 = � −�� .� ��� ���
���+
1
ℎ5+
��� ���+
1
ℎ3 Keterangan :
h5 = koefisien konveksi permukaan kaca dalam (W/m2K)
h3 = koefisien konveksi permukaan luar (W/m2K)
���,2 = kehilangan panas kaca pintu 2 (W)
���2 =
403−298 .0,30481
0,005 1,4 +
1
2,003 +
0,005 1,4 +
1 6,33
���2 = 142,656 W
12.Mencari Total Kehilangan Panas pada body 2, Q totalbody2 adalah
Q total body2 = Q dinding + Q alas + Q kaca 2
Q total body2 = 22,584 + 29,83 + 142,656
Q total body2 = 195,07 W
Maka, total kehilangan panas pada body 2 adalah 195,07 W
13.Total kehilangan panas dari kompor surya
Total kehilangan panas dari kompor surya diperoleh dengan menjumlahkan total kehilangan panas pada body 1 dan 2 adalah
Qtotal = Qtotal body,1 + Qtotal body,2
Qtotal = 154,61 W + 195,07 W
Qtotal = 349,68 W
(66)
4.3 HASIL PENGUJIAN
Data hasil pengujian berupa data temperatur dan intensitas radiasi matahari. Data tersebut direkam permenit dengan alat ukur berupa agilent dan hobo microstation. Data tersebut akan ditampilkan dalam bentuk grafik.
4.3.1 Hasil Pengujian 11 Juni 2014
Hasil pengujian disajikan dalam bentuk grafik perbandingan temperatur air 1 liter terhadap waktu dibawah ini,
Grafik 4.1Temperatur terhadap waktu pengujian I. Keterangan grafik 4.1 :
Pengujian dilakukan pada tanggal 11 Juni 2014 dengan memasak air sebanyak 1 liter. Pengujian dimulai pukul 08.00 – 16.30 WIB. Kemudian hasil pengujian disajikan dalam grafik 4.1. Berdasarkan grafik diperoleh temperatur maksimum air adalah 87,83 oC pada pukul 12.40 WIB.Temperatur maksimum kaca dalam datar adalah 82,22 oC pada pukul 12.34 WIB. Temperatur maksimum plat absorber datar adalah 108,23 oC pada pukul 12.26 WIB. Temperatur maksimum kaca luar datar adalah 55,76 oC pada pukul 12.18 WIB. Temperatur kaca dalam miring adalah 88,21 oC pada pukul 11.02 WIB. Temperatur kaca luar miring adalah 61,21 oC pada pukul 11.33 WIB. Termperatur maksimum plat absorber miring adalah 112,94 oC pada pukul 10.49 WIB. Temperatur maksimum ruang masak adalah 100,89 oC pada pukul 12.35 WIB. Temperatur maksimum lingkungan adalah 37,233 oC pada pukul 13.41 WIB.
Data hasil pengukuran intensitas radiasi matahari pada saat pengujian ditampilkan dalam bentuk grafik 4.2 berikut,
Temperatur (oC)
(1)
452 15:33 36.79 45.51 74.07 82.51 73.45 62.90 45.90 80.70 32.949 368.1 453 15:34 36.92 45.23 73.91 82.49 73.46 63.10 45.98 81.35 33.079 354.4 454 15:35 36.55 44.99 74.01 82.36 73.08 63.00 45.40 80.21 32.717 321.9 455 15:36 35.71 43.61 72.56 82.25 71.98 62.08 44.19 75.24 32.51 143.1 456 15:37 36.20 44.10 72.06 82.14 71.75 61.84 44.54 74.37 32.484 216.9 457 15:38 36.53 44.06 71.69 82.07 71.40 61.44 44.70 72.79 32.536 166.9 458 15:39 36.40 45.13 72.49 81.97 72.12 62.63 45.78 79.02 32.536 473.1 459 15:40 36.72 45.20 73.44 81.84 72.66 63.22 45.87 82.60 32.613 484.4 460 15:41 37.30 45.29 74.62 81.77 73.29 63.80 46.12 84.81 32.794 528.1 461 15:42 36.77 44.88 75.07 81.71 73.74 64.41 45.82 86.36 32.82 523.1 462 15:43 37.09 45.65 75.67 81.60 74.14 64.81 46.61 87.58 32.794 520.6 463 15:44 36.51 44.18 74.84 81.55 73.78 63.92 45.14 82.48 32.82 246.9 464 15:45 33.48 44.99 74.30 81.49 73.47 63.54 45.61 78.97 32.846 246.9 465 15:46 36.62 44.91 74.39 81.42 73.37 64.23 46.00 82.54 32.691 454.4 466 15:47 37.20 44.68 74.06 81.38 73.29 63.45 45.40 79.04 32.613 214.4 467 15:48 36.66 45.06 74.49 81.29 73.46 64.37 46.19 83.31 32.768 500.6 468 15:49 37.79 45.55 75.67 81.21 73.66 64.85 47.20 86.13 33.079 504.4 469 15:50 37.57 45.58 75.83 81.18 73.93 65.17 47.12 87.21 33.157 481.9 470 15:51 37.43 45.15 76.36 81.12 73.97 65.31 46.99 87.74 33.209 468.1 471 15:52 36.57 44.45 76.13 81.05 73.92 65.33 46.08 87.45 32.975 459.4 472 15:53 35.89 44.25 76.17 81.04 73.74 65.55 46.12 87.26 32.562 455.6 473 15:54 35.57 43.94 75.19 80.98 73.37 64.87 45.66 83.94 32.407 263.1 474 15:55 36.41 44.32 75.36 80.91 73.41 64.92 46.25 83.86 32.253 453.1 475 15:56 37.09 44.55 75.28 80.84 73.83 64.42 46.38 83.93 32.562 390.6 476 15:57 36.43 44.17 75.96 80.83 73.85 63.97 45.84 84.14 32.639 421.9 477 15:58 36.77 44.55 75.96 80.75 73.96 63.70 46.33 84.43 32.51 446.9 478 15:59 36.12 44.02 75.64 80.67 73.66 63.44 46.15 84.19 32.587 430.6 479 16:00 37.15 45.25 75.98 80.68 73.94 63.24 46.93 83.29 32.717 413.1 480 16:01 36.82 44.85 75.82 80.57 73.87 62.90 46.26 82.30 32.924 391.9 481 16:02 36.51 44.83 76.05 80.56 73.86 62.60 45.74 81.11 32.975 404.4
(2)
482 16:03 37.03 45.47 75.92 80.55 74.00 62.44 45.84 80.80 32.924 418.1 483 16:04 37.14 45.33 76.10 80.49 74.10 62.16 45.85 80.33 32.794 431.9 484 16:05 36.82 45.44 76.10 80.45 74.05 61.94 45.81 79.23 32.742 410.6 485 16:06 37.09 44.82 75.25 80.34 73.76 61.43 45.20 77.11 32.768 344.4 486 16:07 36.59 45.00 75.25 80.32 73.41 61.10 45.05 76.21 32.536 376.9 487 16:08 36.68 44.98 75.52 80.28 73.34 60.99 44.96 75.70 32.458 383.1 488 16:09 36.69 44.95 75.17 80.18 73.49 60.70 45.13 75.47 32.562 383.1 489 16:10 36.39 44.90 74.80 80.16 73.29 60.54 44.63 74.92 32.536 389.4 490 16:11 36.40 44.34 74.95 80.08 73.25 60.24 44.62 74.26 32.665 363.1 491 16:12 35.88 44.49 74.41 80.03 72.73 60.00 44.42 73.61 32.562 323.1 492 16:13 43.93 73.98 79.95 72.51 59.61 44.16 72.77 32.458 264.4 493 16:14 35.92 43.76 73.27 79.91 72.05 59.31 44.00 71.65 32.433 216.9 494 16:15 35.92 43.86 72.76 79.77 71.57 58.89 43.99 70.95 32.381 223.1 495 16:16 35.75 43.99 72.58 79.67 71.34 58.65 44.14 70.56 32.355 238.1 496 16:17 35.67 43.99 72.15 79.67 71.23 58.37 44.26 70.03 32.484 209.4 497 16:18 36.15 43.98 71.93 79.54 71.04 58.13 43.95 69.63 32.51 228.1 498 16:19 36.26 44.44 71.99 79.50 71.05 57.91 44.04 69.32 32.562 250.6 499 16:20 36.36 44.28 71.85 79.42 70.85 57.70 44.09 69.01 32.691 233.1 500 16:21 36.03 44.03 71.62 79.31 70.41 57.39 43.74 68.64 32.639 244.4 501 16:22 36.36 43.91 70.95 79.24 70.21 57.14 43.75 67.96 32.562 164.4 502 16:23 35.78 43.75 70.47 79.18 69.78 56.71 43.35 67.13 32.433 198.1 503 16:24 35.76 43.57 69.93 79.08 69.18 56.33 43.28 66.17 32.278 139.4 504 16:25 35.69 43.22 69.24 78.94 68.85 55.91 43.06 65.35 32.304 131.9 505 16:26 35.39 42.86 68.70 78.87 68.24 55.67 42.67 64.53 32.124 134.4 506 16:27 35.56 43.17 68.11 78.76 67.89 55.23 42.72 63.75 32.073 126.9 507 16:28 35.64 42.90 67.80 78.65 67.42 54.93 42.42 63.06 32.047 128.1 508 16:29 35.63 42.60 67.21 78.48 66.78 54.55 42.06 62.50 31.944 109.4 509 16:30 35.45 42.76 66.51 78.37 66.47 54.09 42.35 61.97 31.919 109.4 510 16:31 35.70 42.39 66.31 78.21 66.10 53.76 42.14 61.50 31.996 109.4 511 16:32 35.50 42.29 65.85 78.14 65.77 53.54 41.99 61.05 31.944 111.9
(3)
512 16:33 35.81 42.90 65.82 78.02 65.56 53.24 42.37 60.80 32.047 123.1 513 16:34 36.03 42.85 65.74 77.90 65.54 53.03 42.36 60.66 32.175 151.9 514 16:35 36.20 42.93 65.53 77.76 65.38 52.77 42.18 60.49 32.175 144.4 515 16:36 35.93 42.49 65.46 77.62 65.36 52.59 42.02 60.40 32.124 194.4 516 16:37 36.48 42.71 65.13 77.50 65.20 52.33 42.23 60.38 32.124 153.1 517 16:38 36.12 42.65 65.03 77.36 65.07 52.10 42.11 60.44 32.15 169.4 518 16:39 35.64 42.46 64.65 77.21 64.72 51.91 41.76 60.32 32.021 165.6 519 16:40 35.55 41.64 64.39 77.07 64.45 51.70 41.35 60.09 31.944 131.9 520 16:41 35.28 42.11 64.08 76.99 64.05 51.59 41.35 59.70 31.868 123.1 521 16:42 35.63 42.06 63.78 76.88 63.83 51.40 41.32 59.51 31.97 128.1 522 16:43 35.79 42.26 63.82 76.79 63.48 51.26 41.38 59.42 31.944 206.9 523 16:44 35.87 41.84 63.82 76.64 63.24 51.10 41.24 59.27 31.944 120.6 524 16:45 35.42 41.91 63.19 76.47 62.94 50.76 41.12 58.91 31.868 103.1 525 16:46 35.84 42.06 63.04 76.37 62.70 50.60 41.18 58.30 31.816 96.9 526 16:47 35.52 41.86 62.59 76.26 62.56 50.40 41.00 57.86 31.868 98.1 527 16:48 35.67 41.88 62.39 76.11 62.29 50.24 40.99 57.61 31.996 100.6 528 16:49 35.74 41.81 61.95 75.97 62.01 49.97 41.10 57.50 31.919 101.9 529 16:50 35.00 41.46 61.83 75.88 61.69 49.82 40.86 57.24 31.893 99.4 530 16:51 35.28 41.31 61.34 75.69 61.27 49.57 40.65 56.89 31.765 89.4 531 16:52 35.52 41.40 61.24 75.57 61.23 49.40 40.82 56.32 31.791 85.6 532 16:53 34.58 41.05 60.90 75.37 61.02 49.17 40.62 55.91 31.868 84.4 533 16:54 35.04 41.22 60.78 75.25 60.88 48.99 40.52 55.52 31.791 90.6 534 16:55 34.86 40.82 60.53 75.07 60.82 48.77 40.21 55.25 31.765 103.1 535 16:56 35.07 41.16 60.29 74.96 60.82 48.60 40.51 55.20 31.689 115.6 536 16:57 35.41 41.01 60.52 74.86 60.96 48.62 40.27 55.25 31.714 125.6 537 16:58 35.63 41.23 60.45 74.71 60.99 48.49 40.29 55.45 31.714 134.4 538 16:59 35.71 41.29 60.29 74.59 61.00 48.44 40.37 55.57 31.765 136.9 539 17:00 35.49 40.92 60.24 74.45 60.89 48.35 40.32 55.69 31.816 140.6
(4)
D.
Grafik Temperatur terhadap Waktu pada Volume Air 1 Liter.
Maksimal
Time
Temperatur (
oC)
Kaca dlm Datar
12:34
82.22
Plat Datar
12:26
108.23
Kaca Luar Datar
12:18
55.76
Air
12:40
87.83
Kaca Dlm Miring
11:02
88.21
Kaca Luar Miring
11:33
61.21
Plat Miring
10:49
112.94
Ruang Masak
12:35
100.89
Temp Lingkungan
13:41
37.233
(5)
E.
Grafik Temperatur terhadap Waktu pada Volume Air 2 Liter.
Maksimal
Time
Temperatur (
oC)
Kaca dlm Datar
13:13
69.83
Alas Datar
13:11
91.15
Kaca Luar Datar
13:12
46.58
Air
14:20
77.97
Kaca Dlm Miring
10:37
73.16
Kaca Luar Miring
10:27
50.62
Alas Miring
10:28
96.65
Ruang Masak
13:11
83.51
Temp Lingkungan
13:54
35.049
(6)