Sampling consistency and strong sampling consistency

This is equivalent to saying that conditionally given that the first split is into subtrees with n 1 ≥ . . . ≥ n i ≥ . . . ≥ n k ≥ 1 leaves and that leaf 1 is in a subtree with n i leaves, the delabelled subtrees S ◦ 1 , . . . , S ◦ k of the common ancestor are independent and distributed as T ◦ n j respectively, j ∈ [k]. Since this conditional distribution does not depend on i, we have established the Markov branching property of T ◦ n . b Notice that if γ = 1−α, the alpha-gamma model is the model related to stable trees, the labelling of which is known to be exchangeable, see Section 3.4. On the other hand, if γ 6= 1 − α, let us turn to look at the distribution of T 3 . ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ❅ ❅ ❅ ❅ 1 2 3 1 3 2 Probability: γ 2− α Probability: 1− α 2− α We can see the probabilities of the two labelled trees in the above picture are different although they have the same unlabelled tree. So if γ 6= 1 − α, T n is not exchangeable.

2.5 Sampling consistency and strong sampling consistency

Recall that an unlabelled Markov branching tree T ◦ n , n ≥ 2 has the property of sampling consistency, if when we select a leaf uniformly and delete it together with the adjacent branch point if its degree is reduced to 2, then the new tree, denoted by T ◦ n,−1 , is distributed as T ◦ n−1 . Denote by d : D n → D n−1 the induced deletion operator on the space D n of probability measures on T ◦ n , so that for the distribution P n of T ◦ n , we define dP n as the distribution of T ◦ n,−1 . Sampling consistency is equivalent to dP n = P n−1 . This property is also called deletion stability in [12]. Proposition 12. The unlabelled alpha-gamma trees for 0 ≤ α ≤ 1 and 0 ≤ γ ≤ α are sampling consistent. Proof. The sampling consistency formula 14 in [16] states that dP n = P n−1 is equivalent to qn 1 , . . . , n k = k X i=1 n i + 1m n i +1 + 1 n + 1m n i qn 1 , . . . , n i + 1, . . . , n k ↓ + m 1 + 1 n + 1 qn 1 , . . . , n k , 1 + 1 n + 1 qn, 1qn 1 , . . . , n k 8 for all n 1 ≥ . . . ≥ n k ≥ 1 with n 1 + . . . + n k = n ≥ 2, where m j is the number of n i , i ∈ [k], that equal j, and where q is the splitting rule of T ◦ n ∼ P n . In terms of EPPFs 1, formula 8 is equivalent to 1 − pn, 1 pn 1 , . . . , n k = k X i=1 pn 1 , . . . , n i + 1, . . . , n k + pn 1 , . . . , n k , 1. 9 Now according to Proposition 10, the EPPF of the alpha-gamma model with α 1 is p seq α,γ n 1 , . . . , n k = Z n Γ α n  γ + 1 − α − γ 1 nn − 1 X u6=v n u n v   p PD ∗ α,−α−γ n 1 , . . . , n k , 10 414 where Γ α n = Γn − αΓ1 − α. Therefore, we can write p seq α,γ n 1 , . . . , n i + 1, . . . , n k using 2 Z n+1 Γ α n + 1  γ + 1 − α − γ 1 n + 1n   X u6=v n u n v + 2n − n i     a k Z n+1    Y j: j6=i w n j    w n i +1 = p seq α,γ n 1 , . . . , n k + 21 − α − γ n − 1n − n i − P u6=v n u n v n + 1nn − 1 Z n Γ α n p PD ∗ α,−α−γ n 1 , . . . , n k × n i − α n − α and p seq α,γ n 1 , . . . , n k , 1 as Z n+1 Γ α n + 1  γ + 1 − α − γ 1 n + 1n   X u6=v n u n v + 2n     a k+1 Z n+1    k Y j=1 w n j    w 1 = p seq α,γ n 1 , . . . , n k + 21 − α − γ n − 1n − P u6=v n u n v n + 1nn − 1 Z n Γ α n p PD ∗ α,−α−γ n 1 , . . . , n k × k − 1α − γ n − α . Sum over the above formulas, then the right-hand side of 9 is 1 − 1 n − α γ + 2 n + 1 1 − α − γ p seq α,γ n 1 , . . . , n k . Notice that the factor is indeed p seq α,γ n, 1. Hence, the splitting rules of the alpha-gamma model satisfy 9, which implies sampling consistency for α 1. The case α = 1 is postponed to Section 3.2. Moreover, sampling consistency can be enhanced to strong sampling consistency [16] by requiring that T ◦ n−1 , T ◦ n has the same distribution as T ◦ n,−1 , T ◦ n . Proposition 13. The alpha-gamma model is strongly sampling consistent if and only if γ = 1 − α. Proof. For γ = 1 − α, the model is known to be strongly sampling consistent, cf. Section 3.4. ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ❅ ❅ ❅ ❅ ❅ ❅ t ◦ 3 t ◦ 4 If γ 6= 1 − α, consider the above two deterministic unlabelled trees. P T ◦ 4 = t ◦ 4 = q seq α,γ 2, 1, 1q seq α,γ 1, 1 = α − γ5 − 5α + γ2 − α3 − α. Then we delete one of the two leaves at the first branch point of t ◦ 4 to get t ◦ 3 . Therefore P T ◦ 4,−1 , T ◦ 4 = t ◦ 3 , t ◦ 4 = 1 2 P T ◦ 4 = t ◦ 4 = α − γ5 − 5α + γ 22 − α3 − α . 415 On the other hand, if T ◦ 3 = t ◦ 3 , we have to add the new leaf to the first branch point to get t ◦ 4 . Thus P T ◦ 3 , T ◦ 4 = t ◦ 3 , t ◦ 4 = α − γ 3 − α P T ◦ 3 = t ◦ 3 = α − γ2 − 2α + γ 2 − α3 − α . It is easy to check that PT ◦ 4,−1 , T ◦ 4 = t ◦ 3 , t ◦ 4 6= PT ◦ 3 , T ◦ 4 = t ◦ 3 , t ◦ 4 if γ 6= 1 − α, which means that the alpha-gamma model is then not strongly sampling consistent. 3 Dislocation measures and asymptotics of alpha-gamma trees

3.1 Dislocation measures associated with the alpha-gamma-splitting rules

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52