B, t = G B, t, G B, t} B, t} is relatively compact in D B, t. It follows that B, t → B, [[B]], G B, t in law in D B, t have the same law in D B, t have the same law. This can be B, t

Theorem 3.8. If g ∈ C ∞ R is bounded with bounded derivatives, then the sequence B, G + n 1, B, G + n g, B converges to B, [[B]], 18 R g ′′′ B ds + R gBd[[B]] in the sense of finite- dimensional distributions on [0, ∞, where G + n g, B, t := 1 p n ⌊nt⌋ X j=1 gBt j h 3 n 1 6 ∆B j , t ≥ 0, n ≥ 1. Proof. The proof is exactly the same as the proof of Theorem 3.7, except ǫ j −1 must be everywhere replaced ǫ j , and Lemma 3.2 v must used instead of Lemma 3.2 i v. ƒ Proof of Theorem 3.1. We begin by observing the following general fact. Suppose U and V are càdlàg processes adapted to a filtration under which V is a semimartingale. Similarly, suppose e U and e V are càdlàg processes adapted to a filtration under which e V is a semimartingale. If the processes U, V and e U, e V have the same law, then U0V 0 + R · Us − dV s and e U0e V 0 + R · e Us − d e V s have the same law. This is easily seen by observing that these integrals are the limit in probability of left-endpoint Riemann sums. Now, let G − n and G + n be as defined previously in this section. Define G − g, B, t = − 1 8 Z t g ′′′ Bs ds + Z t gBs d[[B]] s , G + g, B, t = 1 8 Z t g ′′′ Bs ds + Z t gBs d[[B]] s . Let t = t 1 , . . . , t d , where 0 ≤ t 1 · · · t d . Let G − n

g, B, t = G

− n

g, B, t

1 , . . . , G − n

g, B, t

d , and similarly for G + n , G − , and G + . By Theorems 2.12, 3.7, and 3.8, the sequence {B, V n B, G − n

g, B, t, G

+ n

g, B, t}

∞ n=1 is relatively compact in D R 2 [0, ∞ × R d × R d . By passing to a subsequence, we may assume it converges in law in D R 2 [0, ∞ × R d × R d to B, [[B]], X , Y , where X , Y ∈ R d . By Theorems 2.12 and 3.7, {B, V n B, G − n

g, B, t} is relatively compact in D

R 2 [0, ∞ × R d , and converges in the sense of finite-dimensional distributions to B, [[B]], G −

g, B, t. It follows that

B, V n B, G − n g, B, t → B, [[B]], G −

g, B, t in law in D

R 2 [0, ∞ × R d . Hence, B, [[B]], X and B, [[B]], G −

g, B, t have the same law in D

R 2 [0, ∞ × R d . By the general fact we observed at the beginning of the proof, G − g, B, X and G − g, B, G −

g, B, t have the same law. This can be

seen, for example, by letting Ut = ‚ − 1 8 g ′′′ Bt gBt X Œ , e Ut = ‚ − 1 8 g ′′′ Bt gBt G −

g, B, t

Œ , V t = e V t =    t [[B]] t 1    . 2151 In particular, G −

g, B, t, X and G

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52