Pengaruh Penambahan Sari Buah Mengkudu (Morinda citrifolia L) Terhadap Bilangan Peroksida, Bilanagan Iodin Dan Bilangan Asam Dari Minyak Goreng Bekas

(1)

PENGARUH PENAMBAHAN SARI BUAH MENGKUDU (Morinda citrifolia L) TERHADAP PERUBAHAN

BILANGAN PEROKSIDA, BILANGAN IODIN DAN BILANGAN ASAM DARI

MINYAK GORENG BEKAS

SKRIPSI

SARTIKA S SINAGA 030802046

DEPARTEMEM KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

MEDAN 2008


(2)

PERSETUJUAN

Judul : PENGARUH PENAMBAHAN SARI BUAH

MENGKUDU (Morinda citrifolia L) TERHADAP PERUBAHAN BILANGAN PEROKSIDA, BILANGAN IODIN DAN

BILANGAN ASAM DARI MINYAK GORENG BEKAS

Kategori : SKRIPSI

Nama : SARTIKA S SINAGA

Nomor Induk Mahasiswa : 030802046

Program Studi : SARJANA ( S1 ) KIMIA

Departemen : KIMIA

Fakultas : MATEMATIKA DAN ILMU PENGETAHUAN

ALAM (FMIPA) UNIVERSITAS SUMATERA UTARA

Disetujui di

Medan, 10 Desember 2008

Komisi Pembimbing :

Pembimbing II Pembimbing I

Drs.Chairuddin,MSc Drs.B.Lumban Tobing

NIP.131 653 992 NIP. 130 538 366

Diketahui / disetujui oleh Departemen Kimia FMIPA USU Ketua,

Dr. Rumondang Bulan Nst. MS NIP. 131 459 466


(3)

PERNYATAAN

PENGARUH PENAMBAHAN SARI BUAH MENGKUDU TERHADAP PERUBAHAN BILANGAN PEROKSIDA,

BILANGAN IODIN DAN BILANGAN ASAM DARI MINYAK GORENG BEKAS

SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya

Medan, Desember 2008

SARTIKA S SINAGA 030802046


(4)

PENGHARGAAN

Puji dan syukur penulis panjatkan kepada Tuhan Yesus Kristus buat Kasih dan BerkatNya yang melimpah sehingga penulis bisa menyelesaikan skripsi ini pada waktu yang telah ditetapkan

Penulis juga mengucapkan terimakasih banyak buat Ibunda tercinta L.Situmorang dan juga kepada kakak dan adik saya (Kak Dame G.Eros dan Benyamin Oterpan) buat segala dukungan dan kesabarannya selama ini.

Ucapan terimakasih saya kepada Bapak Drs.B.Lumban Tobing selaku dosen Pembimbing I dan kepada Bapak Drs.Chairuddin, MSc selaku Pembimbing II pada penyelesaian skripsi ini yang telah memberikan panduan dan penuh kepercayaan kepada saya untuk menyelesaikan skripsi ini. Terimakasih juga ditujukan kepada Ketua dan Sekretaris Departemen Ibu Dr.Rumondang NST, MS dan Bapak Drs.Firman Sebayang, MS, Dekan dan Pembantu Dekan FMIPA USU. Dan akhirnya tidak terlupakan kepada Kak Seri Mawarni, Eda Lome Rajagukguk dan juga kepada teman-teman khususnya kepada Devi R.N.Sigalingging, Friska Gultom, Jetty Simanjuntak, Butet Deliana, Maria Silitonga dan Laura Tambunan buat segala bantuannya. Semoga Tuhan yang akan membalasnya.


(5)

ABSTRAK

Telah dilakukan penelitian tentang pengaruh penambahan sari buah Mengkudu (Morinda citrifolia L) terhadap perubahan bilangan peroksida, bilangan iodin dan bilangan asam dari minyak goreng bekas penggorengan tempe pada suhu 140o-170oC

Minyak goreng bekas tersebut ditambahkan sari buah mengkudu dengan variasi volume 20 mL, 30 mL, dan 40 mL, serta ditentukan bilangan peroksida, bilangan iodin dan bilangan asamnya secara titrimetri

Hasil penelitian menunjukkan semakin tingginya volume sari buah mengkudu yang ditambahkan ke dalam minyak goreng bekas , maka bilangan peroksidanya menurun, sedangkan bilangan iodin dan bilangan asamnya meningkat.


(6)

THE EFFECT OF MENGKUDU (Morinda citrifolia L) ESSENCE ADDITION TO THE CHANGES OF PEROXIDE VALUE, IODINE VALUE

AND ACID VALUE FROM FRIED OIL

ABSTRACT

The effect of Mengkudu (Morinda citrifolia L) essence addition to the changes of peroxide value, iodine value and acid value from fried oil was used to frying tempe at 140o-170oC has been studied.

Fried oil was added to the Mengkudu essence with various volume of 20 mL, 30 mL and 40 mL. Peroxide value, iodine value and acid value were determined titrimetricaly

Result of the analysis showed that more higher the addition of Mengkudu essence into fried oil, the peroxide value is lower, while iodine and acid value are higher.


(7)

DAFTAR ISI

Halaman

Persetujuan ii

Pernyataan iii

Penghargaan iv

Abstrak v

Abstract vi

Daftar Isi vii

Darfar Tabel ix

Daftar Grafik x

BAB 1. PENDAHULUAN 1

1.1.Latar Belakang 1

1.2.Permasalahan 2

1.3.Tujuan Penelitian 3

1.4.Manfaat Penelitian 3

1.5.Pembatasan Masalah 3

1.6.Metodologi Percobaan 3

1.7.Lokasi Penelitian 3

BAB 2. TINJAUAN PUSTAKA 4

2.1. Minyak dan Lemak 4

2.1.1. Sumber Minyak dan Lemak 5

2.1.2. Sifat Fisiko-Kimia Minyak Kelapa sawit 6 2.1.2.1. Asam Lemak Bebas (ALB) 6

2.1.2.2. Bilangan Peroksida 7

2.1.2.3. Bilangan Iodin 7

2.2. Minyak Goreng 8

2.2.1. Kerusakan Minyak Goreng 9

2.2.1.1. Ketengikan 10

2.3. Buah Mengkudu 11

2.3.1. Kandungan Buah Mengkudu 11

BAB 3. BAHAN DAN METODOLOGI PENELITIAN 12

3.1. Alat – alat 12

3.2. Bahan-bahan 12

3.3. Prosedur Penelitian

3.3.1. Pembuatan Larutan Na2S2O3 13 3.3.2. Pembuatan Larutan KI 15% 13 3.3.3. Pembuatan Larutan KI Jenuh 13 3.3.4. Pembuatan Larutan KOH 0,1N 13 3.3.5. Pembuatan Larutan NaOH 0,1 N 13 3.3.6. Pembuatan Larutan Amilum 1% 14 3.3.7. Perlakuan Terhadap Minyak 14 3.3.8. Perlakuan Terhadap Mengkudu 14 3.3.9. Pengujian Standar Mutu Minyak Goreng 14


(8)

Bekas dengan Variasi Penambahan Sari Buah Mengkudu

3.3.10.Penentuan Bialangan Peroksida 14 3.3.11.Penentuan Bilangan Iodin 15

3.3.12.Penentuan Bilangan Asam 15

3.4. Bagan Percobaan 16

3.4.1. Perlakuan Terhadap Minyak Goreng 16 3.4.2. Perlakuan Terhadap Mengkudu 16 3.4.3. Pengujian Bilangan Peroksida, Bilangan Iodin dan

Bilangan Asam dari Hasil Penambahan 17 Sari Buah Mengkudu

3.4.4. Penentuan Bilangan Peroksida 18 3.4.5. Penentuan Bilangan Iodin 19 3.4.6. Penentuan Bilangan Asam 20

BAB 4. HASIL DAN PEMBAHASAN 21

4.1. Hasil dan Pengolahan data Percobaan 21

4.1.1. Data perbandingan Kualitas Minyak Goreng 21 Bimoli Baru, Minyak Goreng Bekas

Sebelum dan Setelah Penambahan Sari Buah Mengkudu

4.1.2. Perhitungan Bilangan Peroksida 22

4.1.3. Perhitungan Bilangan Iodin 23

4.1.3. Perhitungan Bilangan Asam 24 4.1.4. Rancangan Acak Lengkap Untuk Data 25 Pengaruh Penambahan Sari Buah Mengkudu

4.1.5. Rancangan Acak Lengkap Untuk Data 28 Bilangan Peroksida dari Minyak Goreng Bekas

dengan Penambahan Sari Buah Mengkudu

4.1.6. Selisih antara perlakuan-perlakuan (sampel) 28 pada penentuan bilangan iodin dari

minyak goreng bekas setelah penambahan sari buah mengkudu dengan variasi volume

4.1.7. Selisih antara perlakuan-perlakuan (sampel) 28 pada penentuan bilangan asam dari

minyak goreng bekas setelah penambahan sari buah mengkudu dengan variasi volume

4.2. Pembahasan 29

BAB 5. KESIMPULAN DAN SARAN

5.1. Kesimpulan 31

5.2. Saran 31

DAFTAR PUSTAKA 32


(9)

DAFTAR TABEL

Halaman

Tabel 2.1. Standar Mutu Minyak Goreng 9

Tabel 1. Data Volume Titrasi Na2S2O3 untuk Pengukuran Bilangan Peroksida 33 dari Minyak Bimoli Baru, Sebelum dan Sesudah Tempe Digoreng

Tabel 2. Data Volume Titrasi Na2S2O3 untuk Pengukuran Bilangan Iodin 33

dari Minyak Bimoli Baru, Sebelum dan Sesudah Tempe Digoreng

Tabel 3. Data Volume Titrasi Na2S2O3 untuk Pengukuran Bilangan Asam 34 dari Minyak Bimoli Baru, Sebelum dan Sesudah Tempe Digoreng

Tabel 4. Data Volume Titrasi Na2S2O3 untuk Pengukuran Bilangan Peroksida 34 dari Minyak dari Minyak Goreng Setelah Ditambah

Sari Buah Mengkudu dengan Variasi Volume 20 mL, 30 mL, dan 40mL Tabel 4.1. Data Perbandingan Kualitas Minyak Goreng Bimoli Baru, Minyak 21

Goreng Bekas Sebelum dan Sesudah Penambahan SariBuah Mengkudu Tabel 4.2. Selisih antara Perlakuan – Perlakuan (sample) pada penentuan Bilangan 28

Iodin dari Minyak Goreng Bekas Setelah Penambahan Sari Buah Mengkudu dengan Variasi Volume

Table 4.3. Selisih antara perlakuan-perlakuan (sampel) pada penentuan Bilangan 28 asam dari minyak goreng bekas setelah penambahan sari buah

mengkudu dengan variasi volume

Tabel 5. Data Volume Titrasi Na2S2O3 untuk Pengukuran Bilangan Iodin 35

dari Minyak dari Minyak Goreng Bekas Setelah Ditambah

Sari Buah Mengkudu dengan Variasi Volume 20 mL, 30 mL, dan 40mL Tabel 6. Data Volume Titrasi Na2S2O3 untuk Pengukuran Bilangan Asam 36 dari Minyak dari Minyak Goreng Bekas Setelah Ditambah


(10)

DAFTAR GAMBAR

Halaman Gambar 1. Perubahan Bilangan Peroksida terhadap Variasi Penambahan 37 Sari Buah Mengkudu

Gambar 2. Perubahan Bilangan Iodin terhadap Variasi Penambahan 37 Sari Buah Mengkudu

Gambar 3. Perubahan Bilangan Asam terhadap Variasi Penambahan 38 Sari Buah Mengkudu


(11)

ABSTRAK

Telah dilakukan penelitian tentang pengaruh penambahan sari buah Mengkudu (Morinda citrifolia L) terhadap perubahan bilangan peroksida, bilangan iodin dan bilangan asam dari minyak goreng bekas penggorengan tempe pada suhu 140o-170oC

Minyak goreng bekas tersebut ditambahkan sari buah mengkudu dengan variasi volume 20 mL, 30 mL, dan 40 mL, serta ditentukan bilangan peroksida, bilangan iodin dan bilangan asamnya secara titrimetri

Hasil penelitian menunjukkan semakin tingginya volume sari buah mengkudu yang ditambahkan ke dalam minyak goreng bekas , maka bilangan peroksidanya menurun, sedangkan bilangan iodin dan bilangan asamnya meningkat.


(12)

THE EFFECT OF MENGKUDU (Morinda citrifolia L) ESSENCE ADDITION TO THE CHANGES OF PEROXIDE VALUE, IODINE VALUE

AND ACID VALUE FROM FRIED OIL

ABSTRACT

The effect of Mengkudu (Morinda citrifolia L) essence addition to the changes of peroxide value, iodine value and acid value from fried oil was used to frying tempe at 140o-170oC has been studied.

Fried oil was added to the Mengkudu essence with various volume of 20 mL, 30 mL and 40 mL. Peroxide value, iodine value and acid value were determined titrimetricaly

Result of the analysis showed that more higher the addition of Mengkudu essence into fried oil, the peroxide value is lower, while iodine and acid value are higher.


(13)

BAB I

PENDAHULUAN

1.1.Latar Belakang

Minyak nabati (salah satu contohnya yaitu minyak kelapa sawit) adalah minyak yang telah dimurnikan dan dapat digunakan sebagai bahan pangan. Minyak goreng merupakan salah satu dari sembilan bahan pokok yang dikonsumsi oleh seluruh lapisan masyarakat. Konsumsi minyak goreng biasanya digunakan sebagai media menggoreng bahan pangan ataupun penambah cita rasa.

Selama penggorengan, minyak goreng akan mengalami pemanasan pada suhu tinggi ± 170 -180oC dalam waktu yang cukup lama. Hal ini akan menyebabkan terjadi proses oksidasi, hidrolisis dan polimerisasi yang menyebabkan minyak mengalami kerusakan. Kerusakan utama adalah timbulnya bau dan rasa tengik sedangkan kerusakan lainnya meliputi peningkatan kadar asam lemak bebas (FFA), angka peroksida, timbulnya kekentalan minyak, terbentuknya busa dan adanya kotoran dari bumbu yang digunakan dan dari bahan yang digoreng. Semakin sering digunakan tingkat kerusakan minyak akan semakin tinggi. Penggunaan minyak berkali-kali akan meningkatkan minyak cepat berasap atau berbusa dan meningkatkan warna coklat serta aroma yang tidak disukai pada bahan makanan yang digoreng

Bahaya mengkonsumsi minyak goreng dapat menyebabkan penyakit seperti pengendapan lemak dalam pembuluh darah ( artherosclerosis) dan penurunan nilai cerna lemak. Namun kondisi ini sering menjadi sebuah dilema. Disatu sisi masyarakat kita cenderung masih berorientasi pada nilai ekonomis ketimbang nilai kesehatannya.

Sehubungan dengan banyaknya minyak goreng bekas dari industri maupun rumah tangga dalam jumlah tinggi maka perlu dilakukan upaya untuk mengurangi kandungan yang merugikan kesehatan dalam minyak goreng bekas tersebut seperti asam lemak bebas, senyawa peroksida, zat warna akibat oksidasi dan pengaruh logam


(14)

serta kotoran-kotoran lain sehingga dapat digunakan kembali untuk menggoreng (Susinggih wijaya, 2005).

Salah satu kerusakan minyak adalah oksidasi dari lemak tak jenuh, sehingga membentuk radikal peroksida (Hari Purnomo, 1995).

Radikal bebas peroksida dapat bereaksi dengan antioksidan, sehingga dapat mencegah

pembentukan rantai lebih lanjut. Salah satu antioksidan alami yaitu β-karoten yang

bersifat lifolifilik (suka lipid/lemak), sehingga dapat berperan untuk mencegah peroksidasi lemak lipid. β-karoten dapat ditemukan di dalam berbagai tanaman, misalnya buah mengkudu. Para ahli meneliti, berbagai antioksidan alami terdapat dalam buah mengkudu yaitu:β-karoten; asam askorbat dan skopoletin yang merupakan zat aktif utama yang terdapat di dalam buah mengkudu (Dripa Sjabana, 2002)

Berdasarkan uraian diatas penulis tertarik untuk melakukan penelitian terhadap pengaruh penambahan sari buah mengkudu terhadap minyak goreng bekas dan melihat pengaruhnya pada perubahan bilangan peroksida, bilangan iodin dan bilangan asam

1.2. Permasalahan

Adakah pengaruh penambahan sari buah mengkudu terhadap bilangan peroksida, bilangan iodin dan bilangan asam terhadap minyak goreng bekas

1.3 Tujuan Penelitian

Untuk mengetahui pengaruh penambahan sari buah mengkudu terhadap perubahan bilangan peroksida, bilangan iodin dan bilangan asam dari minyak goreng bekas sehingga dapat mengurangi kandungan yang merugikan kesehatan dalam minyak goreng bekas tersebut


(15)

1.4. Manfaat Penelitian

Hasil dari penelitian ini diharapkan dapat memberikan informasi mengenai pengaruh penambahan sari buah mengkudu terhadap mutu minyak goreng bekas.

1.5 Pembatasan Masalah

Dalam penelitian ini permasalahan dibatasi hanya pada ;

1. Minyak goreng yang digunakan adalah minyak goreng bimoli sebanyak 1000 mL

2. Minyak goreng bekas yang digunakan sebagai sampel adalah minyak goreng bekas hasil penggorengan tempe setelah 4 kali penggorengan

3. Suhu untuk menggoreng adalah 140o-170o C selama 1 jam

4. Pengujian yang dilakukan adalah pengujian bilangan peroksida, bilangan iodin dan bilangan asam

1.6 Metodologi Percobaan

1. Penelitian ini merupakan eksperimen laboratorium

2. Sampel buah mengkudu di ambil secara acak dari Pasar I Padang Bulan- Medan 3. Penentuan bilangan peroksida, bilangan iodin dan bilangan asam dilakukan dengan metode titrimetri

1.7 Lokasi Penelitian

Penelitian ini dilakukan di Laboratorium Kimia Analitik Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatera Utara


(16)

BAB 2

TINJAUAN PUSTAKA

2.1. Minyak dan Lemak

Lemak dan minyak adalah trigliserida, atau triasilgliserol, kedua istilah ini berarti “triester (dari) gliserol”. Perbedaan antara suatu lemak dan minyak, yaitu : pada temperatur kamar lemak berbentuk padat dan minyak bersifat cair. Sebagian gliserida pada hewan adalah berupa lemak sedangkan gliserida dalam tumbuhan cenderung berupa minyak; karena itu biasa terdengar ungkapan lemak hewani (lemak babi, lemak sapi) dan minyak nabati (minyak jagung, minyak bunga matahari)

(Fessenden,R.J.,1986)

Lemak dan minyak mempunyai struktur kimia yang mirip. Lemak dan minyak adalah campuran kompleks dari ester gliserol dengan satu jenis asam karboksilat. Asam karboksilat yang tergabung ke dalam lemak dan minyak sering disebut asam lemak. Umumnya asam lemak yang paling banyak dijumpai mempunyai atom karbon berantai lurus dan mengandung jumlah atom karbon genap.

Asam lemak dengan jumlah atom karbon 12, 16 dan 18 adalah asam lemak jenuh yang paling melimpah. Asam lemak tidak jenuh dengan satu, dua atau tiga gugus fungsi alkena juga biasa ditemukan ; asam lemak tidak jenuh ini yang paling melimpah mempunyai atom karbon 18 dengan satu ikatan rangkap.

Triasilgliserol dimana ketiga gugus hidroksil dari gliserol diesterkan dengan asam yang disebut sebagai triasilgliserol sederhana, misal:

O O

CH2-O-C(CH2)10CH3 CH2-O-C(CH2)16CH

O O

3

CH-O-C(CH2)10CH3 CH2-O-C(CH2)16CH

O O

3

CH2-O-C(CH2)10CH3 CH2-O-C(CH2)16CH

Gliseriltrilaurat Gliseriltristearat


(17)

Dan triasilgliserol campuran mengandung dua atau tiga jenis asam karboksilat yang berbeda. Kecenderungan triasilgliserol campuran berbentuk cairan meningkat dengan meningkatnya ketidakjenuhan (meningkatnya jumlah ikatan rangkap karbon-karbon) dan dengan meningkatnya konsentrasi/kadar asam lemak berantai pendek

(Herman G. Richey,1983)

2.1.1. Sumber Minyak dan Lemak

Minyak dan lemak diperoleh dari berbagai sumber alami. Minyak nabati diperoleh dari biji-bijian yang mengandung minyak seperti minyak biji kapas, minyak biji labu, minyak biji rami, minyak biji jarak atau dari kacang tanah serta kelapa. Minyak kelapa sawit dan minyak biji zaitun bersumber dari daging buah. Lemak hewani bisa diperoleh dari daging babi, lemak sapi dan dari minyak ikan.

Dalam bentuk alaminya banyak minyak memiliki warna, rasa dan bau yang tidak diinginkan. Minyak seperti ini disebut minyak “kasar” dan memerlukan pemurnian jika dimaksudkan untuk minyak yang dapat dimakan. Beberapa minyak disebut “minyak murni”, karena minyak tersebut mempunyai rasa yang diinginkan dan langsung dapat digunakan dalam makanan tanpa perlakukan yang lebih lanjut (Hamilton, 1987)

Salah satu dari beberapa tanaman golongan palm yang dapat menghasilkan minyak adalah kelapa sawit (Elais guinensis JACQ). Kelapa sawit dikenal terdiri dari empat tipe atau varietas yaitu tipe Macrocarya, Dura, Tenera, dan Psifera. Masing-masing tipe dibedakan berdasarkan tebal tempurungnya. Warna daging buah ialah putih kuning di waktu masih muda dan berwarna jingga setelah buah menjadi matang. Minyak kelapa sawit dihasilkan dari inti kelapa sawit yang dinamakan minyak inti kelapa sawit (palm kernel oil) dan sebagai hasil samping ialah bungkil inti kelapa sawit (palm kernel meal atau pellet). Kelapa sawit mengandung lebih 80 persen perikarp dan 20 persen buah yang dilapisi kulit yang tipis; kadar minyak dalam perikarp sekitar 34-40 persen.


(18)

2.1.2. Sifat Fisiko-Kimia Minyak Kelapa sawit

Sifat Fisiko-Kimia Minyak Kelapa sawit meliputi warna, bau dan rasa, kelarutan, titik cair, titik didih. Warna minyak ditentukan oleh adanya pigmen yang masih tesisa setelah proses pemucatan, karena asam-asam lemak dan gliserida tidak berwarna. Warna orange atau kuning disebabkan adanya pigmen karoten yang larut dalam minyak.

Bau dan rasa dalam minyak terdapat secara alami, juga terjadi akibat adanya asam-asam lemak berantai pendek akibat kerusakan minyak sedangkan bau khas minyak kelapa sawit ditimbulkan oleh persenyawaan beta-iodin. Minyak kelapa sawit mengandung beberapa macam asam lemak yang mempuyai titik cair yang berbeda (S.Ketaren,1986)

2.1.2.1. Asam Lemak Bebas (ALB)

Asam lemak bebas adalah suatu asam lemak oleat, linoleat, stearat, dan lain-lain yang tidak terikat pada molekul gliserin. % ALB yang rendah adalah pertanda dari minyak segar yang berkualitas. Di dalam pemurnian minyak yang baik, tingkat asam lemak bebasnya kurang dari 0,05%.

Asam lemak bebas adalah hasil reaksi antara air dan lemak. Meningkatnya % ALB pada waktu penggorengan adalah terutama jumlah uap dari makanan selama proses penggorengan dan suhu penggorengan. Faktor lain yang mempengaruhi meningkatnya ALB termasuk dengan adanya remah-remah makanan yang gosong di dalam minyak.

Tingkat ALB yang sangat tinggi (sekitar 3-4%) bisa menghasilkan asap yang berlebih dan rasa yang tidak sedap. % ALB dapat membantu dalam penilaian syarat dari minyak yang berkualitas baik.


(19)

2.1.2.2. Bilangan Peroksida

Bilangan peroksida adalah menyatakan terjadinya oksidasi dari minyak. Bilangan peroksida berguna untuk penentuan kualitas minyak setelah pengolahan dan penyimpanan. Pada pengolahan minyak dengan cepat dan tepat dari minyak yang berkualitas baik, bilangan peroksidanya hampir mendekati nol. Peroksida akan meningkat sampai pada tingkat tertentu selama penyimpanan sebelum penggunaan, yang jumlahnya tergantung pada waktu, suhu, dan kontaknya dengan cahaya dan udara.

Selama oksidasi, nilai peroksida meningkat secara lambat-laun, yang kemudian dengan cepat mencapai puncak. Tingginya bilangan peroksida menandakan oksidasi yang berkelanjutan, tetapi rendahnya bilangan peroksida bukan berarti bebas dari oksidasi. Pada suhu penggorengan, peroksida meningkat, tetapi menguap dan meninggalkan sistem penggorengan pada temperatur yang tinggi.

2.1.2.3. Bilangan Iodin

Bilangan iodin adalah suatu petunjuk dari jumlah ikatan rangkap di dalam minyak. Bilangan iodin adalah suatu istilah yang dipakai untuk menentukan derajat ketidak jenuhan. Tingginya bilangan iodin menandakan tingginya derajat ketidak jenuhan. Bilangan iodin juga sangat berguna sebagai pertanda dari bentuk minyak: bilangan iodin minyak yang tinggi umumnya berbentuk cair; bilangan iodin minyak yang rendah umumnya berbentuk padat.

Selama pengolahan minyak, dengan meningkatnya tingkat hidrogenasi, bilangan iodinnya akan menurun. Minyak yang digunakan untuk menggoreng, bilangan iodinnya cenderung menurun seiring lamanya waktu penggorengan. Dengan demikian adalah perlu untuk mengetahui bilangan iodin dari minyak segar untuk menentukan angka perubahan selama penggorengan


(20)

2.2. Minyak Goreng

Palm olein merupakan sumber utama untuk pembuatan minyak goreng di Indonesia. Palm olein merupakan salah satu standart minyak goreng yang secara umum digunakan dalam industri penggorengan (frying), seperti mie instant, kentang goreng, ayam goreng dan makanan ringan lainnya. Palm olein sangat stabil, menghilangkan resiko kesehatan dibawah kondisi penggorengan yang terkontrol dan mempunyai sifat nutrisi yang baik. Deep frying dari makanan dalam minyak telah lama dikenal dan merupakan salah satu cara yang telah dan akan sangat penting dalam mengolah makanan. Cara ini sangat cepat , mudah beradaptasi dengan produksi massa dan memberikan produk dengan cita rasa tinggi dan kestabilan penyimpanan yang baik (Choo,1998)

Minyak goreng yang dihasilkan dari bahan yang berbeda mempunyai stabilitas yang berbeda pula karena stabilitas minyak goreng dipengaruhi oleh beberapa faktor seperti derajat ketidak jenuhan asam lemak yang dikandungnya, penyebaran ikatan rangkap dan bahan – bahan yang dapat mempercepat atau memperlambat proses kerusakan (Griswold,1962)

Minyak goreng yang baik mempunyai sifat tahan panas, stabil pada cahaya matahari, tidak merusak rasa hasil penggorengan, menghasilkan produk dan rasa yang bagus, asapnya sedikit setelah digunakan berulang-ulang, serta menghasilkan warna keemasan pada produk. Sebanyak 49 persen dari total permintaan minyak goreng adalah konsumsi rumah tangga dan sisanya keperluan industri, termasuk diantaranya industri perhotelan dan restoran-restoran. Pertumbuhan jumlah penduduk dan perkembangan industri perhotelan, restoran dan usaha makanan cepat saji yang pesat menyebabkan permintaan akan minyak goreng semakin meningkat.

Minyak goreng bukan hanya sebagai media transfer panas ke makanan, tetapi juga sebagai makanan. Selama penggorengan sebagian minyak akan teradsorbsi dan masuk ke bagian luar bahan yang digoreng dan mengisi ruang kosong yang semula diisi oleh air. Hasil penggorengan biasanya mengandung 5-40 persen minyak


(21)

Tabel 2.1. Standar Mutu Minyak Goreng

1. Asam Lemak bebas 0,3 % max

2. Bilangan Asam 6 % max

3. Bilangan peroksida 5 % max

4. Bilangan iodin 56 min

(Standard Industri Indonesia (SII.0003-72))

2.2.1. KERUSAKAN MINYAK GORENG

Salah satu kerusakan minyak adalah oksidasi lipid dari asam lemak tidak jenuh. Kerusakan ini dapat terjadi dalam dua tahap yaitu reaksi lemak dengan oksigen dan selanjutnya secara proses oksidasi. Sebagian besar asam-asam lemak tidak jenuh akan rusak dengan bertambahnya umur dan sebagian hasil kerusakan dapat menguap. Persenyawaan peroksida yang terbentuk dapat membantu proses oksidasi dari sejumlah hasil asam lemak jenuh. Adanya oksigen bebas di bawah pengaruh sinar ultraviolet atau katalis logam pada suhu tinggi dapat secara langsung mengoksidasi asam lemak jenuh.

Autoksidasi radikal bebas dari minyak ditandai oleh empat tahapan yaitu inisiasi, perambatan, pembentukan cabang (branching) dan penghentian (termination). Inisiasi terjadi dengan ditandai oleh hilangnya radikal hidrogen karena panas, cahaya atau logam dalam jumlah renik (trace metal). Dalam tahap perambatan radikal bebas, minyak akan bereaksi dengan oksigen, dan membentuk radikal bebas peroksida yang kemudian akan bereaksi dengan molekul minyak lainnya untuk membentuk hidroperoksida. Pada proses pembentukan cabang, radikal bebas meningkat secara cepat sebagai hasil dekomposisi hidroperoksida. Tahap penghentian mengikutsertakan pengurangan radikal bebas oleh penambahan dua radikal atau pemindahan radikal untuk membentuk radikal yang stabil


(22)

2.2.1.1. Ketengikan

Ketengikan adalah istilah yang digunakan untuk menyatakan rusaknya lemak dan minyak. Pada dasarnya ada dua tipe reaksi yang berperan pada proses ketengikan.

a.Oksidasi

Ini terjadi sebagai hasil reaksi antara trigliserida tidak jenuh dengan oksigen dari udara. Molekul oksigen bergabung pada ikatan ganda molekul trigliserida dan dapat terbentuk berbagai senyawa yng menimbulkan rasa tengik yang tidak sedap. Reaksi ini dipercepat oleh panas, cahaya dan logam-logam dalam konsentrasi amat kecil, khususnya tembaga. Ketengikan terbentuk oleh otoksodasi radikal asam lemak tidak jenuh atau aldehida bukan oleh peroksida. Otoksodasi dimulai dengan pembentukan radikal-radikal bebas yang disebabkan oleh faktor-faktor yang dapat mempercepat oksidasi (F.Winarno,1997)

b.Hidrolisis

Enzim lipase menghidrolisis lemak, memecahnya menjadi gliserol dan asam lemak. Lipase dapat terkandung secara alami pada lemak dan minyak, tetapi enzim itu dapat diinaktivasi dengan pemanasan. Enzim ini dapat pula dihasilkan oleh mikroorganisme yang terdapat pada bahan makanan berlemak. Asam lemak bebas yang dihasilkan oleh reaksi ini dapat memberikan rasa dan bau tidak sedap. Sebagai contoh, rasa yang tidak sedap dari mentega yang tengik sebagian disebabkan oleh asam lemak, yaitu asam butirat.

Ketengikan hidrolitik mungkin juga terjadi jika lemak atau minyak dipanaskan dalam keadaan ada air, misalnya pada penggorengan bahan makanan yang lembab. Ketengikan dapat dikurangi dengan penyimpanan lemak dan minyak dalam tempat yang dingin dan gelap dengan wadah bukan logam dan dijaga agar lemak selalu terbungkus ( K.B.Sherrington,1981)


(23)

2.3. BUAH MENGKUDU

Mengkudu merupakan tanaman obat yang cukup dikenal oleh masyarakat Indonesia. Mengkudu di dunia juga terdapat didaerah tropis di Asia, Australia, dan daerah kepulauan di Samudera Pasifik. Luasnya penyebaran mengkudu ini, salah satunya, dikarenakan bijinya dapat bertahan di permukaan laut dalam waktu cukup lama dan dapat menyesuaikan diri pada kondisi yang beragam. Mengkudu tergolong tanaman tropis yang evergreen, artinya selalu memiliki daun sepanjang tahun. Buahnya pun tidak mengenal musim.

2.3.1.Kandungan Buah Mengkudu

Telah banyak penelitian yang dilakukan oleh para ahli dalam usaha mengidentifikasi kandungan zat-zat di dalam tanaman mengkudu. Terdapat beberapa zat aktif yang lebih berperan dibandingkan zat-zat lainnya di dalam buah mengkudu. Zat-zat aktif utama tersebut meliputi :

1. polisakarida 2. skopeletin 3. asam askorbat 4. β-karoten 5. l-arginin

6. proxeronin dan proxeroninase

Asam askorbat yang ada di dalam buah mengkudu adalah sumber vitamin C yang luar biasa. Vitamin C merupakan salah satu anti oksidan yang hebat. Anti oksidan bermanfaat untuk menetralisir radikal bebas (partikel-partikel berbahaya yang terbentuk sebagai hasil samping proses metabolisme , yang dapat merusak materi genetik dan merusak sistem kekebalan tubuh). Mengkudu juga mengadung zat-zat nutrisi yang dibutuhkan tubuh antara lain : karbohidrat, protein, vitamin, dan mineral essensial juga tersedia dalam buah mengkudu. Selenium adalah salah satu contoh mineral yang banyak terdapat pada mengkudu dan merupakan antioksidan yang hebat ( Dripa Sjabana, 2002)


(24)

BAB III

BAHAN DAN METODE PENELITIAN

3.1.Alat – alat

- Oven Fischer

- Neraca analitis Mettler PM 400

- Satu set alat penggoreng - Kompor

- Magnetik bar - Termometer 200o - Kain kasa

C

- Blender - Kertas saring - Statif dan klem - Spatula

- Alat-alat gelas Pirex

3.2. Bahan-bahan - Buah mengkudu - Minyak goreng Bimoli - Tempe

- Larutan wijs

- Natrium hidroksida p.a.E.Merck

- Natrium tiosulfat p.a E.Merck

- Indikator amilum

- Asam asetat glasial p.a E.Merck

- Kalium iodida p.a E.Merck

- Kalium hidroksida p.a E.Merck - Indikator phenoftalein

- Kloroform p.a E.Merck


(25)

3.3. Prosedur Penelitian

3.3.1. Pembuatan Larutan Na2S2O3 0,1 N

Ditimbang kristal Na2S2O3.5H2O sebanyak 24,817 g, dimasukkan ke dalam gelas

Beaker 250 mL, dilarutkan dengan akuades, dimasukkan ke dalam labu takar 1 L, diencerkan hingga garis tanda dan dihomogenkan.

3.3.2. Standarisasi Larutan Na2S2O3 0,1 N

Ditimbang dengan teliti 4,90 g K2Cr2O7, dilarutkan dengan akuades dalam labu takar

1000 mL dan diencerkan sampai garis standar (Konsentrasi K2Cr2O7 = 0,1 N), dipipet

20 mL larutan K2Cr2O7 0,1 N yang telah dibuat, dipindahkan ke dalam labu

Erlenmeyer 250 mL, diencerkan dengan 100 mL akuades, ditambahkan 2,0 g KI dan 10 ml H2SO4 4N, dikocok dan disimpan larutan tersebut di tempat gelap selama 5

menit, dititrasi larutan campuran dengan Na2S2O3 sampai berwarna kuning pucat

kemudian ditambahkan larutan amilum 1% sebanyak 1 mL,dititrasi kembali dengan Na2S2O3 sampai warna biru hilang.

3.3.3. Pembuatan Larutan KI 15%

Ditmbang kristal KI sebanyak 15,0 g, dimasukkan ke dalam gelas Beaker 250 mL, dilarutkan dengan akuades, dimasukkan ke dalam labu takar 100 ml, diencerkan hingga garis tanda dan dihomogenkan

3.3.4. Pembuatan Larutan KI Jenuh

Sebanyak 55,0 g KI dilarutkan dalam 50 mL akuades, kemudian diaduk sampai KI tidak dapat larut lagi


(26)

3.3.5. Pembuatan Larutan KOH 0,1 N

Ditimbang KOH pelet sebanyak 5,61 g ke dalam gelas Beaker 250 mL, dilarutkan dengan akuades, dimasukkan ke dalam labu takar 1 L , diencerkan hinga garis tanda dan dihomogenkan

3.3.6. Standarisasi Larutan KOH 0,1 N

Dipipet sebanyak 10 mL larutan H2C2O4 0,1 N, dimasukkan ke dalam gelas

Erlenmeyer, ditambahkan 3 tetes indikator Phenolphtalein, dititrasi dengan KOH sampai larutan merah rose

3.3.7. Pembuatan Larutan Amilum 1%

Ditimbang 1,0 g amilum, dimasukkan ke dalam gelas Beaker 250 mL yang berisi akudes 100 mL yang mendidih, diaduk hingga larut

3.3.8. Perlakuan Terhadap Minyak

Minyak goreng Bimoli sebanyak 1000 mL digunakan untuk menggoreng tempe 1,5 kg selama 1 jam pada suhu 140o-170oC dengan menggunakan termometer, diulang 4 kali menggunakan minyak goreng bekas sebelumnya, kemudian minyak hasil penggorengan tersebut disaring dan diukur bilangan peroksida, bilangan iodin dan bilangan asamnya.

3.3.9. Perlakuan Terhadap Mengkudu

Buah mengkudu dipotong-potong dan diblender sampai halus. Kemudian disaring dan diambil sarinya.

3.3.10.Pengujian Standar Mutu Minyak Goreng Bekas dengan Variasi Penambahan Sari Buah Mengkudu

Dengan variasi 20 mL, 30 mL dan 40 mL sari buah mengkudu ditambahkan ke dalam 200 mL minyak goreng bekas, diaduk selama 20 menit dan dipanaskan sampai suhu


(27)

60oC. Didiamkan sampai dingin. Minyak disaring, lalu diukur lagi mutunya yang meliputi bilangan peroksida, bilangan iodin dan bilangan asam.

3.3.11. Penentuan Bilangan Peroksida

Ditimbang sampel minyak goreng sebanyak 5,0 g, dimasukkan ke dalam gelas Erlenmeyer bertutup, ditambahkan campuran pelarut asam asetat glasial : kloroform (3:2,v/v) dengan volume 30 mL. Dikocok sampai semua minyak larut, ditambahkan 0,5 mL larutan KI jenuh dan dikocok selama ± 2menit. Kemudian ditambahkan 30 mL akuades, dititrasi dengan Na2S2O3 0,01N sampai larutan berwarna kuning pucat,

ditambahkan 1 mL amilum 1%. Dititrasi kembali dengan Na2S2O3 0,01 N sampai

warna hitam kebiruan hilang dan dicatat volume Na2S2O3 0,01N. Dilakukan

perlakuan yang sama untuk minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu.

3.3.12. Penentuan Bilangan Iodin

Ditimbang sampel minyak goreng sebanyak 0,50 g dalam gelas Erlenmeyer bertutup, ditambahkan 10 mL kloroform dan 25 mL larutan Wijs, dibiarkan ditempat gelap selama 30 menit. Ditambahakan 10 mL KI 15% dan 100 mL akuades yang telah dididihkan. Dititrasi dengan Na2S2O3 0,1 N sampai larutan berwarna kuning pucat,

ditambahkan 1 mL amilum 1%. Dititrasi kembali sampai warna hitam kebiruan hilang dan dicatat volume Na2S2O3 0,1 N. Dilakukan perlakuan yang sama untuk minyak

goreng bekas sebelum dan sesudah penambahan sari buah mengkudu.

3.3.13. Penentuan Bilangan Asam

Ditimbang sampel minyak goreng sebanyak 5,0 g di dalam gelas Erlenmeyer. Ditambahkan 50 mL alkohol netral 95 %, dipanaskan di atas penangas air selama10 menit sambil diaduk. Didinginkan, dititrasi dengan KOH 0,1 N setelah ditambahkan indikator phenolpthalein sampai larutan berwarna merah jambu.


(28)

BAB 4

HASIL DAN PEMBAHASAN

4.1. Hasil dan Pengolahan data Percobaan

Dari penelitian yang dilakukan terhadap sampel minyak goreng, maka diperoleh data perbandingan kualitas minyak goreng Bimoli baru, minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu seperti pada Tabel 4.1.1. dibawah ini:

Tabel 4.1. Data perbandingan Kualitas Minyak Goreng Bimoli Baru, Minyak Goreng Bekas Sebelum dan Setelah Penambahan Sari Buah Mengkudu

No Sampel Minyak

Goreng Bimoli Bilangan Peroksida (mek/kg) Bilangan Iodin (mek/kg) Bilangan Asam (mg/g)

1 Baru 0,743 62,411 0,209

2 Bekas 3,741 52,894 0,263

3 Setelah Ditambah 20 mL

Sari Buah Mengkudu

2,314 53,849 0,266

4 Setelah Ditambah 30 mL

Sari Buah Mengkudu

1,889 55,960 0,275

5 Setelah Ditambah 40 mL

Sari Buah Mengkudu

1,966 56,244 0,281

6 Standat Mutu Minyak

Goreng Maksimal 5 Minimal 56 Maksimal 6

Hasil ini diperoleh dari pengolahan data yang terdapat pada Lampiran Tabel 1.-Tabel 6, yang perhitungannya dilakukan sebagai berikut:


(29)

4.1.2. Perhitungan Bilangan Peroksida

Bilangan Peroksida =

g VxNx1000

V = Volume Na2S2O3 yang terpakai dalam

titrasi sampel (mL) N = Normalitas Na2S2O3

003 , 5

1000 009

, 0 40 ,

0 mLx Nx

g = Berat Sampel (g) Bilangan Peroksida Minyak Bimoli Baru

1. m = 0,503 g V = 0,40 mL N = 0,009 N

Bilangan Peroksida =

= 0,719 mek/kg 2. m = 5,004 g

V = 0,42 mL N = 0,009 N

Bilangan Peroksida = 0,755 mek/kg 3. m = 5,006 g

V = 0,42 mL N = 0,009 N

Bilangan Peroksida = 0,755 mek/kg

sehingga diperoleh rata-rata bilangan peroksida untuk minyak goreng bimoli baru yaitu 0,743 mek/kg.

Dilakukan perlakuan yang sama terhadap minyak goreng bekas sebelum dan sesudah penambahan sari buah Mengkudu.


(30)

4.1.3. Perhitungan Bilangan Iodin

Bilangan Iodin =

g

xNx Vsampel

Vblanko ) 12,692

( −

N = Normalitas Na2S2O3

g = Berat Sampel (g)

12,691 = Bobot Atom Iodium (126,91) 10

Bilangan Iodin Minyak Bimoli Baru 1. m = 5,003 g

Vblanko = 46,10 mL

V sampel= 18,60 mL

N = 0,09 N

Bilangan Iodin = (46,10 – 18,60)mL x 12,69 x 0,09N 0,503

= 62,441 mek/kg 2. m = 5,004 g

Vblanko = 46,10 mL V sampel= 18,64 mL

N = 0,09 N

Bilangan Iodin = 62,226 mek/kg 3. m = 5,002 g

Vblanko = 46,10 mL V sample = 18,60 mL N = 0,09 N

Bilangan Iodin = 62, 565 mek/kg

sehingga diperoleh rata-rata bilangan iodin untuk minyak goreng bimoli baru yaitu 62,411 mek/kg.

Dilakukan perlakuan yang sama terhadap minyak goreng bekas sebelum dan sesudah penambahan sari buah Mengkudu


(31)

4.1.3. Perhitungan Bilangan Asam

Bilangan Asam =

g VxNx56,1

V = Volume KOH yang terpakai dalm titrasi sample (mL)

N = Normalitas KOH (N)

g = Berat Sampel (g)

Bilangan Asam Minyak Bimoli baru 1.m = 5,006 g

V = 0,24 mL N = 0,08 N

Bilangan Asam = 0,24 mL x 0,08 N x 56,1 5,006

= 0,215 mg/g 2.m = 5,004 g

V = 0,24 mL N = 0,08 N

Bilangan Asam = 0,215 mg/g 3.m = 5,003 g

V = 0,22 mL N = 0,08 N

Bilangan Asam = 0,197 mg/g

sehingga diperoleh rata-rata bilangan asam untuk minyak goreng bimoli baru yaitu 0,209 mg/g.

Dilakukan perlakuan yang sama terhadap minyak goreng bekas sebelum dan sesudah penambahan sari buah Mengkudu


(32)

4.1.4. Rancangan Acak Lengkap Unutk Data Pengaruh Penambahan Sari Buah Mengkudu

Langkah-Langkah perhitungan :

Faktor Korelasi (FK) = (ΣG)2

n

jumlah Kuadrat Total (JKT) = Xi2 – FK

Jumlah Kuadrat Perlakuan (JKP) = (ΣTi2) - FK r

Jumlah Kuadrat Galat (JKG) = JKT – JKP

Kuadrat Tengah Perlakuan (KTP) = JKP t-1

Kuadrat Tengah Galat (KTG) = JKG

t(r-1)

Dimana : G = Total seluruh data

Xi = Data Hasil Pengamatan

Ti = Total Perlakuan

r = Banyak Ulangan

t = Banyak Perlakuan

4.1.5. Rancangan Acak Lengkap Untuk Data Bilangan Peroksida dari Minyak Goreng Bekas dengan Penambahan Sari Buah Mengkudu

Derajat Bebas (db) Total = t (r) – 1 = 3(3) – 1 = 8 db. Perlakuan = t – 1 = 3 – 1 = 2 db Galat = t (r – 1) = 3 (3-1) = 6

1.Faktor Korelasi (FK) = (17,967)2

9 = 35,868 2. Jumlah Kuadrat Total (JKT) = Xi2 - FK

= (2,123)2 + (2,122)2 +……..(1,978)2 – 35,868 = 0,113

3. Jumlah Kuadrat Perlakuan (JKP) = (ΣTi2) - FK r


(33)

= (6,40202 + (5,666)2 + (5,899)2 - 35,868 3

= 40,986 + 32,104 + 34,798 – 35,868 3

= 35,963 – 35,868 = 0,095

4. Jumlah Kuadrat Galat (JKG) = JKT – JKP

= 0,113 – 0,095 = 0,018

5. Kuadrat Tengah Perlakuan (KTP) = JKP t-1

= 0,095 3-1 = 0,095 2 = 0,048 6. Kuadrat Tengah Galat (KTG) = JKG

t(r-1)

= 0,018 6 = 0,003

7. F Hitung = KTP

KTG

= 0,048 0,003 = 16


(34)

F Hitung = 16

F Tabel (0,01) = 10,92

(0,05) = 5,14 F Hitung > F Tabel

Dimana : Ho = tidak ada pengaruh penambahan sari buah mengkudu dengan variasi volume terhadap minyak goreng bekas

Ha = ada pengaruh penambahan sari buah mengkudu dengan variasi volume terhadap minyak goreng bekas

Maka Ho ditolak, Ha diterima. Hal ini berarti ada pengaruh penambahan sari buah mengkudu dengan variasi volume terhadap bilangan peroksida minyak goreng bekas.

Selanjutnya dilakukan perhitungan uji Beda Nyata Terkecil (BNT) untuk taraf

α=0.05 dan taraf α = 0,01 pada penentuan bilangan peroksida dari minyak goreng

bekas setelah penambahan sari buah mengkudu dengan variasi volume 20 mL, 30mL dan 40 mL

BNT = t(α

r KTG

2

)(v)

Dimana : t α = nilai t yang diperoleh dari Tabel t Student

r = Banyaknya Ulangan v = Derajat Bebas Galat BNT (0,05) = t

3 ) 003 , 0 ( 2 (0,05)(6)

=2,447 x 0,045 = 0,110

BNT(0,01) = t

3 ) 030 , 0 ( 2 (0,01)(6)

= 3,707 x 0,045 = 0,167


(35)

Selisih antara perlakuan-perlakuan (sampel) pada penentuan bilangan peroksida dari minyak goreng bekas setelah penambahan sari buah mengkudu dengan variasi volume adalah :

Perlakuan Selisih rata-rata

BNT Hasil Uji

0,050 0,010 0,050 0,010

20-30 mL 0,736 0,110 0,167 S S

20–40 mL 0,503 0,110 0,167 S S

30–40 mL 0,233 0,110 0,167 S S

Keterangan : S = Signifikan ( Berbeda Nyata)

TS = Tidak signifikan ( Tidak Berbeda Nyata)

Tabel 4.2.Selisih antara perlakuan-perlakuan (sampel) pada penentuan bilangan iodin dari minyak goreng bekas setelah penambahan sari buah mengkudu dengan variasi volume adalah :

Perlakuan Selisih rata-rata

BNT Hasil Uji

0,050 0,010 0,050 0,010

20-30 mL 6,335 3.497 5,297 S S

20–40 mL 7,186 3.497 5,297 S S

30–40 mL 0,851 3.497 5,297 TS TS

Tabel 4.3.Selisih antara perlakuan-perlakuan (sampel) pada penentuan bilangan asam dari minyak goreng bekas setelah penambahan sari buah mengkudu dengan variasi volume adalah :

Perlakuan Selisih rata-rata

BNT Hasil Uji

0,050 0,010 0,050 0,010

20-30 mL 0,055 0,029 0,044 S TS

20–40 mL 0,046 0,029 0,044 S TS


(36)

4.2. Pembahasan

Dari 1000 mL minyak goreng bimoli setelah dipakai untuk menggoreng tempe sebanyak 1,5 kg, di dapat minyak goreng bekas sebanyak 600 mL. Minyak goreng bekas ini ditentukan bilangan peroksida, bilangan iodin dan bilangan asamnya dengan metode titrimetri sebelum dan sesudah penambahan sari buah mengkudu

4.2.1. Bilangan Peroksida

Bilangan peroksida adalah nilai terpenting untuk menentukan derajat kerusakan pada minyak. Asam lemak tidak jenuh dapat mengikat oksigen pada ikatan rangkapnya sehingga membentuk peroksida (S.Ketaren,1986)

Setelah penggorengan pada suhu 140o-170o selama 4 kali pengulangan menyebabkan terjadinya proses oksidasi yang menghasilkan peroksida. Hal ini ditunjukkan dengan naiknya bilangan peroksida minyak sebelum digoreng, dari 0,43 mek/kg meningkat sampai 3,741 mek/kg. Tetapi setelah penambahan sari buah mengkudu sebanyak 20 – 30 mL, bilangan peroksidanya menjadi 1,888 mek/kg seperti yang terlihat pada kurva Gambar 1 pada lampiran.

Hal ini disebabkan karena dalam sari buah mengkudu terdapat antioksidan yaitu beta-karoten yang bersifat lifolifilik, sehingga dapat berperan pada minyak untuk mencegah dan menurunkan peroksidasi lipid. Antioksidan (AH) memberikan atom hidrogen secara cepat ke radikal lipida (R*, ROO*

R* + AH RH + A*

) dengan reaksi sebagai berikut :

ROO* + AH ROOH + A*

Setelah memberikan elektronnya, beta-karoten tersebut menjadi radikal beta-karoten. Walau tidak terlalu reaktif (tidak terlalu berbahaya), radikal beta-karoten tersebut juga perlu dihilangkan, salah satu caranya dengan bereaksi dengan asam askorbat. Walau berperan sebagai antioksidan, antioksidan tersebut juga membentuk radikal oksidan baru, yang walau tidak terlalu berbahaya tetapi tetap harus dihilangkan melalui antioksidan atau melalui serangkaian antioksidan lain. Oleh karenanya, sering dibutuhkan kombinasi beberapa antioksidan untuk mendapatkan manfaat secara optimal. Buah mengkudu memiliki sederetan antioksidan, diantaranya ;skopoletin, asam askorbat dan beta-karoten.

Namun pada penambahan sari buah mengkudu 40 mL, bilangan peroksidanya naik. Ini disebabkan besarnya konsentrasi antioksidan yang ditambahkan dapat


(37)

berpengaruh pada laju oksidasi. Pada konsentrasi tinggi, aktivitas antioksidan tersebut dapat berperan sebagai prooksidan tanggal 24 September 2008)

4.2.2. Bilangan iodin

Bilangan iodin menunjukkan banyaknya ikatan rangkap yang terdapat pada asam lemak tidak jenuh dari minyak. Bilangan iodin minyak goreng bimoli sebelum digoreng sebesar 62,441 mek/kg dan menurun menjadi 52,894 mek/kg.

Dari data dapat diketahui dengan penambahan sari buah mengkudu, akan mengakibatkan penambahan bilangan iodin, atau dengan kata lain volume beta-karoten dan skopoletin akan semakin bertambah,sehingga semakin banyak iodin yang dibutuhkan untuk memutuskan ikatan rangkap pada minyak de

4.2.3. Bilangan Asam

Bilangan asam adalah ukuran dari jumlah asam lemak bebas. Kenaikan bilangan asam setelah digoreng disebabkan oleh terjadinya proses hidrolisa karena adanya air. Air ini terbawa dari bahan makanan yang digoreng dan dipercepat oleh suhu penggorengan. Dari 0,029 mg/g sebelum digoreng, bilangan asamnya naik menjadi 0,263 mg/g.

Setelah ditambahkan sari buah mengkudu dengan variasi volume 20mL, 30 mL dan 40 mL, bilangan asam dari minyak goreng tersebut semakin meningkat sampai 0,281 mg/g. Hal ini diduga disebabkan kandungan air dari sari buah mengkudu menghidrolisis minyak sehingga terbentuk asam lemak bebas. Reaksinya sebagai berikut:

O

H2C-O-C H2

O

C-OH R

HC-O-C + 3HOH HC –OH + 3RCOOH

R

O air

H2C-O-C H2C-OH

R

Trigliserida Gliserol Asam lemak bebas

Selain itu bilangan asam juga dipengaruhi kadar vitamin C. Dengan penambahan sari buah mengkudu akan meningkatkan kadar vitamin C sehingga bilangan asam semakin meningkat


(38)

BAB 5

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari hasil penelitian diperoleh bahwa

Bilangan peroksida berkurang bila volume sari buah mengkudu bertambah yaitu pada penambahan sari buah mengkudu 20 mL dan 30 mL bilangan peroksidanya menurun dari 2,314 mek/kg menjadi 1,889 mek/kg tetapi pada penambahan sari buah mengkudu 40 mL bilangan peroksidanya menjadi 1,966 mek/kg karena antioksidan tersebut pada konsentrasi tinggi menjadi prooksidan, sedangkan bilangan iodinnya meningkat dengan penambahan sari buah mengkudu 20 mL, 30 mL dan 40 mL yaitu 53,849 mek/kg, 55,960 mek/g dan 56,244 mek/kg. Begitu juga dengan bilangan asamnya meningkat dengan penambahan sari buah mengkudu 20 mL, 30 mL dan 40 mL yaitu 0,266 mg/g, 0,275 mg/g dan 0,281 mg/g. Dari hasil statistiknya, bilangan peroksida dan bilangan iodinnya menunjukkankan adanya pengaruh penambahan sari buah Mengkudu yang berbeda nyata, namun pada bilangan asamnya, penambahan sari buah mengkudu tidak berbeda nyata.

5.2. Saran

Karena diperolehnya bilangan asam yang semakin meningkat, diharapkan kepada peneliti selanjutnya agar dapat menurunkan bilangan asam dari minyak goreng bekas tersebut setelah penambahan sari buah Mengkudu.


(39)

DAFTAR PUSTAKA

Choo, S.Y. 1987. Red Palm Oil a carotene Rich Nutritions Oil in Nutritional Component of Plam Oil. Malaysia Palm Oil at AOCS Scattle Washington

Deman,J.M.1986. Principles of Food Chemistry . New York : Publish by Van Nostran Reinhold Company

Fessenden. 1986. Kimia Organik. Jilid 2. Jakarta : Penerbit Erlangga

Hamilton,R.J.1986. Analysis of Oil and Fat. Departemen of Chemistry

Antioksidan: Jenis, Sumer, Mekanisme Kerja dan

Peran terhadap Kesehatan.Diakses tanggal 24 September 2008

Ketaren, S.1986. Minyak dan Lemak Pangan. Jakarta : UI-Press

Lawson, H.W.1985 Standarts for Fats and Oils. USA : AVI Publishing

Company,Inc

Purnomo,H. 1995. Aktivitas Air dan Peranannya dalam Pengawetan Pangan

Richey, H.G.1983. Fundamentals of Organic Chemistry. New Jersey : Prentice-Hall. Inc

Sherrington, K.B.1981. Ilmu Pangan: Pengantar Ilmu Pangan, Nutrisi dan

Mikrobiologi. Yogyakarta : Gajah Mada Universitas Press

Sjabana ,D.2002. Pesona Tradisional dan Ilmiah: Mengkudu. Jakarta : Penerbit Salemba Medika

Sudarmadji, S.1989. Analisa Bahan Makanan dan Pertanian. Yokyakarta : Penerbit Liberti

Wijaya,S.2005. Mengolah Minyak Goreng Bekas. Trubus Agrisarana


(40)

Tabel 1. Data Volume Titrasi Na2S2O3

No

untuk Pengukuran Bilangan Peroksida dari Minyak Bimoli Baru, Sebelum dan Sesudah Tempe Digoreng

Sampel Berat sampel

(g)

Volume Na2S2O

Bilangan Peroksida

(mek/kg)

3

0,009 N (mL)

1 Minyak Bimoli Baru 5,003 0,40 0,719

5,004 0,42 0,755

5,006 0,42 0,755

2 Minyak Bimoli Bekas 5,004 2,14 3,849

5,002 2,14 3,849

5,006 2,10 3,775

Tabel 2. Data Volume Titrasi Na2S2O3

No

untuk Pengukuran Bilangan Iodin dari

Minyak Bimoli Baru, Sebelum dan Sesudah Tempe Digoreng

Sampel Berat sampel

(g)

Volume Na2S2O

Bilangan Iodin (mek/g)

3

0,09 N (mL)

1 Minyak Bimoli Baru 0,503 18,60 62,441

0,504 18,64 62,226

0,502 18,60 62,565

2 Minyak Bimoli Bekas 0,503 22,20 54,267

0,506 23,58 50,830


(41)

Tabel 3. Data Volume Titrasi Na2S2O3

No

untuk Pengukuran Bilangan Asam dari Minyak Bimoli Baru, Sebelum dan Sesudah Tempe Digoreng

Sampel Berat sampel

(g)

Volume Na2S2O

Bilangan Asam

(%)

3

0,08 N (mL)

1 Minyak Bimoli Baru 5,006 0,24 0,215

5,004 0,24 0,215

5,003 0,22 0,197

2 Minyak Bimoli Bekas 5,002 0,28 0,251

5,004 0,30 0,269

5,005 0,30 0,269

Tabel 4. Data Volume Titrasi Na2S2O3

No

untuk Pengukuran Bilangan Peroksida dari Minyak dari Minyak Goreng Bekas Setelah Ditambah Sari Buah Mengkudu dengan Variasi Volume 20 mL, 30 mL, dan 40 mL

Variasi Volume Sari Buah Mengkudu

(mL)

Berat Sampel (g)

Volume Na2S2O3

Bilangan Peroksida

(mek/kg) 0,009N (mL)

1 20 5,003 1,18 2,123

5,004 1,18 2,122

5,006 1,20 2,157

2 30 5,003 1,02 1,835

5,004 1,10 1,978

5,002 1,03 1,853

3 40 5,002 1,12 2,015

5,006 1,10 1,906


(42)

Tabel 5. Data Volume Titrasi Na2S2O3

No

untuk Pengukuran Bilangan Iodin dari Minyak dari Minyak Goreng Bekas Setelah Ditambah Sari Buah Mengkudu dengan Variasi Volume 20 mL, 30 mL, dan 40 mL

Variasi Volume Sari Buah Mengkudu

(mL)

Berat Sampel (g)

Volume Na2S2O3

Bilangan Iodin (mek/kg) 0,09N

(mL)

1 20 0,503 22,80 52,904

0,502 22,00 54,829

0,503 22,40 53,813

2 30 0,506 21,92 54,577

0,502 21,00 57,105

0,504 21,30 56,199

3 40 0,504 22,02 54,567

0,501 21,00 57,219


(43)

Tabel 6. Data Volume Titrasi Na2S2O3

No

untuk Pengukuran Bilangan Asam dari Minyak dari Minyak Goreng Bekas Setelah Ditambah Sari Buah Mengkudu dengan Variasi Volume 20 mL, 30 mL, dan 40 mL

Variasi Volume Sari Buah Mengkudu

(mL)

Berat Sampel (g)

Volume Na2S2O3

Bilangan Asam

(%) 0,08N (mL)

1 20 5,006 0,30 0,268

5,004 0,31 0,278

5,003 0,28 0,251

2 30 5,003 0,30 0,269

5,006 0,32 0,287

5,002 0,30 0,269

3 40 5,004 0,30 0,269

5,002 0,32 0,287


(44)

3.4. Bagan Percobaan

3.4.1. Perlakuan Terhadap Minyak Goreng

digoreng tempe selama 1jam pada suhu 140o-170oC dengan menggunakan termometer, diulang 4 kali

diuji bilangan peroksida, bilangan iodin dan bilangan asam

3.4.2. Perlakuan Terhadap Buah Mengkudu

dimasukkan ke dalam blender dihaluskan

disaring Minyak Goreng Bimoli

Minyak goreng bekas

Bilangan Peroksida

Bilangan iodin

Bilangan Asam

600 g mengkudu


(45)

3.4.3. Pengujian Bilangan Peroksida, Bilangan Iodin dan Bilangan Asam dari Hasil Penambahan Sari Buah Mengkudu

ditambahkan sari mengkudu 20 mL diaduk selama 20 menit

dipanaskan sampai suhu 60o didiamkan sampai dingin

C

disaring

diukur mutu minyak goreng

Catatan : Perlakuan yang sama dilakukan untuk variasi penambahan sari buah mengkudu 30 mL dan 40 mL

200 ml minyak goreng bekas

Lapisan atas Lapisan bawah

residu filtrat

Bilangan Peroksida

Bilangan iodin

Bilangan Asam


(46)

3.4.4. Penentuan Bilangan Peroksida

Dimasukkan ke dalam gelas Erlenmeyer bertutup

Ditambahkan campuran pelarut 60 % asam asetat glasial : 40 % kloroform (3:2,v/v) dengan

volume 30 mL

Dikocok sampai minyak larut

Ditambahkan 0,5 mL larutan KI jenuh Ditutup,dikocok ± 2 menit

Ditambahkan 30 mL akuades Dititrasi dengan Na2S2O3 0,01 N

Ditambahkan 1 mL amilum 1 %

Dititrasi dengan Na2S2O3

Catatan : Dilakukan perlakuan yang sama untuk minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu dengan variasi volume 20mL, 30mL, dan 40 mL

0,01 N sampai warna hitam kebiruan hilang

Sampel Minyak goreng

Larutan kuning jernih

Larutan kuning pucat

Larutan berwarna hitam kebiruan


(47)

3.4.5. Penentuan Bilangan Iodin

Dimasukkan ke dalam gelas Erlenmeyer

bertutup

Ditambahkan 10 mL kloroform Dikocok sampai minyak larut

Ditambahkan 25 mL larutan Wijs

Ditutup, dibiarkan ditempat gelap selama 30 menit

Ditambahkan 10 mL larutan KI 15 %

Ditambahkan 100 mL akuades yang telah didihkan Dititrasi dengan Na2S2O3 0,1 N

Ditambahkan 1 mL amilum 1%

Dititrasi dengan Na2S2O3 0,1 N sampai warna hitam

kebiruan hilang

Catatan : Dilakukan perlakuan yang sama untuk minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu dengan variasi volume 20mL, 30mL, dan 40 mL

Larutan coklat

Larutan berwarna kuning pucat Sampel minyak

goreng

Larutan kuning jernih

Larutan berwarna hitam kebiruan


(48)

3.4.6. Penentuan Bilangan Asam

Dimasukkan ke dalam Erlenmeyer Ditambahkan 50 mL alkohol netral Dipanaskan selama 10 menit dalam penangas air sambil diaduk

Dititrasi dengan KOH 0,1 N dengan indikator phenofphtalein 1 %

Catatan : Dilakukan perlakuan yang sama untuk minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu dengan variasi volume 20mL,

30mL, dan 40 mL

Sampel minyak goreng


(49)

0

500

1,000

1,500

2,000

2,500

0

20

40

60

Volume sari buah mengkudu (mL)

B

il

an

g

an

P

er

o

ksi

d

a

(m

ek/

kg

)

Gambar 1. Perubahan Bilangan Peroksida terhadap Variasi Penambahan Sari Buah Mengkudu

Gambar 2. Perubahan Bilangan Iodin terhadap Variasi Penambahan Sari Buah Mengkudu

53.849

55.96

56.244

53.5

54

54.5

55

55.5

56

56.5

0

20

40

60

volume sari buah mengkudu (mL)

b

il

a

n

g

a

n

i

o

d

in

(m

ek/

kg

)


(50)

0.265

0.27

0.275

0.28

0.285

0

10

20

30

40

50

Volume sari buah mengkudu (mL)

B

il

a

n

g

a

n

A

s

a

m

(

m

g

/g

)

Gambar 3. Perubahan Bilangan Asam terhadap Variasi Penambahan Sari Buah Mengkudu


(1)

3.4.3. Pengujian Bilangan Peroksida, Bilangan Iodin dan Bilangan Asam dari Hasil Penambahan Sari Buah Mengkudu

ditambahkan sari mengkudu 20 mL diaduk selama 20 menit

dipanaskan sampai suhu 60o didiamkan sampai dingin

C

disaring

diukur mutu minyak goreng

Catatan : Perlakuan yang sama dilakukan untuk variasi penambahan sari buah mengkudu 30 mL dan 40 mL

200 ml minyak goreng bekas

Lapisan atas Lapisan bawah

residu filtrat

Bilangan Peroksida

Bilangan iodin

Bilangan Asam


(2)

3.4.4. Penentuan Bilangan Peroksida

Dimasukkan ke dalam gelas Erlenmeyer bertutup

Ditambahkan campuran pelarut 60 % asam asetat glasial : 40 % kloroform (3:2,v/v) dengan

volume 30 mL

Dikocok sampai minyak larut

Ditambahkan 0,5 mL larutan KI jenuh Ditutup,dikocok ± 2 menit

Ditambahkan 30 mL akuades Dititrasi dengan Na2S2O3 0,01 N

Ditambahkan 1 mL amilum 1 %

Dititrasi dengan Na2S2O3

Catatan : Dilakukan perlakuan yang sama untuk minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu dengan variasi volume 20mL, 30mL, dan 40 mL

0,01 N sampai warna hitam kebiruan hilang

Sampel Minyak goreng

Larutan kuning jernih

Larutan kuning pucat

Larutan berwarna hitam kebiruan


(3)

3.4.5. Penentuan Bilangan Iodin

Dimasukkan ke dalam gelas Erlenmeyer

bertutup

Ditambahkan 10 mL kloroform Dikocok sampai minyak larut

Ditambahkan 25 mL larutan Wijs

Ditutup, dibiarkan ditempat gelap selama 30 menit

Ditambahkan 10 mL larutan KI 15 %

Ditambahkan 100 mL akuades yang telah didihkan Dititrasi dengan Na2S2O3 0,1 N

Ditambahkan 1 mL amilum 1%

Dititrasi dengan Na2S2O3 0,1 N sampai warna hitam

kebiruan hilang

Catatan : Dilakukan perlakuan yang sama untuk minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu dengan variasi volume 20mL, 30mL, dan 40 mL

Larutan coklat

Larutan berwarna kuning pucat Sampel minyak

goreng

Larutan kuning jernih

Larutan berwarna hitam kebiruan


(4)

3.4.6. Penentuan Bilangan Asam

Dimasukkan ke dalam Erlenmeyer Ditambahkan 50 mL alkohol netral Dipanaskan selama 10 menit dalam penangas air sambil diaduk

Dititrasi dengan KOH 0,1 N dengan indikator phenofphtalein 1 %

Catatan : Dilakukan perlakuan yang sama untuk minyak goreng bekas sebelum dan sesudah penambahan sari buah mengkudu dengan variasi volume 20mL,

30mL, dan 40 mL

Sampel minyak goreng


(5)

0

500

1,000

1,500

2,000

2,500

0

20

40

60

Volume sari buah mengkudu (mL)

B

il

an

g

an

P

er

o

ksi

d

a

(m

ek/

kg

)

Gambar 1. Perubahan Bilangan Peroksida terhadap Variasi Penambahan Sari Buah Mengkudu

Gambar 2. Perubahan Bilangan Iodin terhadap Variasi Penambahan Sari Buah Mengkudu

53.849

55.96

56.244

53.5

54

54.5

55

55.5

56

56.5

0

20

40

60

volume sari buah mengkudu (mL)

b

il

a

n

g

a

n

i

o

d

in

(m

ek/

kg

)


(6)

0.265

0.27

0.275

0.28

0.285

0

10

20

30

40

50

Volume sari buah mengkudu (mL)

B

il

a

n

g

a

n

A

s

a

m

(

m

g

/g

)

Gambar 3. Perubahan Bilangan Asam terhadap Variasi Penambahan Sari Buah Mengkudu