Upper bounds getdocc6b9. 250KB Jun 04 2011 12:04:57 AM

3.1 Upper bounds

Let Y λ be the process associated with the following Dirichlet form: E Y λ f , f = 1 2 Z R d d X i, j=1 a i j x ∂ f x ∂ x i ∂ f x ∂ x j d x + Z Z |x− y|≤λ f y − f x 2 J x, yd x d y, 3.3 so that Y λ has jumps of size less than λ only. Let N λ be the exceptional set corresponding to the Dirichlet form defined by 3.3. Let P Y λ t be the semigroup associated with E Y λ . We will use the arguments in [FOT94] and [CKS87] as indicated in the proof of Lemma 2.3 to obtain the existence of the heat kernel p Y λ t, x, y as well as some upper bounds. For any v, ψ ∈ F , we can define Γ λ [v]x = 1 2 ∇v · a∇v + Z |x− y|≤λ vx − v y 2 J x, yd y, D λ ψ 2 = ke −2ψ Γ λ [e ψ ]k ∞ ∨ ke 2 ψ Γ λ [e −ψ ]k ∞ , and provided that D λ ψ ∞, we set E λ t, x, y = sup{|ψ y − ψx| − t D λ ψ 2 ; D λ ψ ∞}. Proposition 3.4. There exists a constant c 1 such that the following holds. p Y λ t, x, y ≤ c 1 t −d2 exp[ −E λ 2t, x, y], ∀ x, y ∈ R d \N λ, and t ∈ 0, ∞, where p Y λ t, x, y is the transition density function for the process Y λ associated with the Dirichlet form E Y λ . Proof. Similarly to Proposition 3.1, we write E Y λ f , f = E Y λ c f , f + E Y λ d f , f , Since J x, y ≥ 0 for all x, y ∈ R d , we have E Y λ f , f ≥ E Y λ c f , f . 3.4 We have the following Nash inequality; see Section VII.2 of [Bas97]: k f k 21+ 2 d 2 ≤ c 2 E Y λ c f , f k f k 4 d 1 . This, together with 3.4 yields k f k 21+ 2 d 2 ≤ c 2 E Y λ f , f k f k 4 d 1 . Now applying Theorem 3.25 from [CKS87], we get the required result. ƒ 322 We now estimate E λ t, x, y to obtain our first main result. Proof of Theorem 2.4. Let us write Γ λ as Γ λ [v] = Γ c λ [v] + Γ d λ [v], where Γ c λ [v] = 1 2 ∇v · a∇v, and Γ d λ [v] = Z |x− y|≤λ vx − v y 2 J x, yd y. Fix x , y ∈ € R d \N λ Š × € R d \N λ Š . Let µ 0 be constant to be chosen later. Choose ψx ∈ F such that |ψx − ψ y| ≤ µ|x − y| for all x, y ∈ R d . We therefore have the following: ¯ ¯ ¯e −2ψx Γ d λ [e ψ ]x ¯ ¯ ¯ = e −2ψx Z |x− y|≤λ e ψx − e ψ y 2 J x, yd y = Z |x− y|≤λ e ψ y−ψx − 1 2 J x, yd y ≤ c 1 Z |x− y|≤λ |ψx − ψ y| 2 e 2 |ψx−ψ y| J x, yd y ≤ c 1 µ 2 e 2 µλ Z |x− y|≤λ |x − y| 2 J x, yd y = c 1 µ 2 K λe 2 µλ , where K λ = sup x ∈R d Z |x− y|≤λ |x − y| 2 J x, yd y. Some calculus together with the ellipticity condition yields: ¯ ¯ ¯e −2ψx Γ c λ [e ψ ]x ¯ ¯ ¯ = 1 2 ¯ ¯ ¯e −2ψx ∇e ψx · a∇e ψx ¯ ¯ ¯ = 1 2 ¯ ¯ ∇ψx · a∇ψx ¯ ¯ ≤ 1 2 Λk∇ψk 2 ∞ ≤ 2µ 2 Λ. Combining the above we obtain ¯ ¯ ¯e −2ψx Γ λ [e ψ ]x ¯ ¯ ¯ ≤ c 1 µ 2 K λe 2 µλ + 2µ 2 Λ. Since we have similar bounds for ¯ ¯ e 2 ψx Γ λ [e −ψ ]x ¯ ¯ , we have − E λ 2t; x, y ≤ 2t D λ ψ 2 − |ψ y − ψx| ≤ 2tµ 2 € c 1 K λe 2 µλ + 2Λ Š − ¯ ¯ ¯ ¯ µx − y · x − y |x − y | ¯ ¯ ¯ ¯ . 3.5 323 Taking x = x , y = y and µ = λ = 1 in the above and using Proposition 3.4 together with the fact that t ≤ 1, we obtain p Y t, x , y ≤ c 2 t − d 2 e −|x − y | , Since x and y were taken arbitrarily, we obtain the required result. ƒ The following is a consequence of Proposition 3.4 and an application of Meyer’s construction. Proposition 3.5. Let r ∈ 0, 1]. Then for x ∈ R d \N , P x sup s ≤t r 2 |X s − x| r ≤ 1 2 , where t is a small constant. Proof. The proof is a follow up of that of the Theorem 2.4, so we refer the reader to some of the notations there. Let λ be a small positive constant to be chosen later. Let Y λ be the subprocess of X having jumps of size less or equal to λ. Let E Y λ and p Y λ t, x, y be the corresponding Dirichlet form and probability density function respectively. According to Proposition 3.4, we have p Y λ t, x, y ≤ c 1 t −d2 exp[ −E λ 2t, x, y]. 3.6 Taking x = x and y = y in 3.5 yields − E λ 2t; x , y ≤ 2tµΛ + 2c 2 t µ 2 K λe 2 µλ − µ|x − y | 3.7 Taking λ small enough so that Kλ ≤ 1 2c 2 , the above reduces to −E λ 2t; x , y ≤ 2tµ 2 Λ + tλ 2 µλ 2 e 2 µλ − µ|x − y | ≤ 2tµ 2 Λ + tλ 2 e 3 µλ − µ|x − y |. Upon setting µ = 1 3 λ log 1 t 1 2 and choosing t such that t 1 2 ≤ λ 2 , we obtain −E λ 2t; x , y ≤ c 3 t 1 2 log t 2 + t λ 2 1 t 1 2 − |x − y | 3 λ log 1 t 1 2 ≤ c 3 t 1 2 log t 2 + 1 + log[t |x − y |6λ ]. Applying the above to 3.6 and simplifying p Y λ t, x , y ≤ c 4 e c 3 t 1 2 log t 2 t |x − y |6λ t −d2 = c 4 e c 3 t 1 2 log t 2 t |x − y |12λ−d2 t |x − y |12λ = c 4 e c 3 t 1 2 log t 2 t |x − y |12λ−d2 e |x0−y0| 12 λ log t . For small t, the above reduces to p Y λ t, x , y ≤ c 5 t |x − y |12λ−d2 e −c 6 |x − y |12λ 3.8 324 Let us choose λ = c 7 r d with c 7 124 so that for |x − y | r2, we have |x − y |12λ − d2 d 2. Since t is smallless than one, we obtain P x |Y λ t − x | r2 ≤ Z |x − y|r2 c 5 t |x − y|12λ−d2 e −c 3 |x − y|12λ d y ≤ c 5 t d 2 Z |x − y|r2 e −c 3 |x − y|12λ d y. We bound the integral on the right hand side to obtain P x |Y λ t − x | r2 ≤ c 7 t d 2 e −c 8 r . Therefore there exists t 1 0 small enough such that for 0 ≤ t ≤ t 1 , we have P x |Y λ t − x | r2 ≤ 1 8 . We now apply Lemma 3.8 of [BBCK] to obtain P x sup s ≤t 1 |Y λ s − Y λ | ≥ r ≤ 1 4 ∀ s ∈ 0, t 1 ]. 3.9 We can now use Meyer’s argumentRemark 3.3 to recover the process X from Y λ . Recall that in our case J x, y = J x, y1 |x− y|≤λ so that after using Assumptions 2.2a and choosing c 7 smaller if necessary, we obtain sup x N x ≤ c 9 r −2 , where c 9 depends on the K i s and N x = Z R d J x, z − J x, zdz. Set t 2 = t r 2 with t small enough so that t 2 ≤ t 1 . Recall that U 1 is the first time at which we introduce the big jump. We thus have P x sup s ≤t 2 |X s − x | ≥ r ≤ P x sup s ≤t 2 |X s − x | ≥ r, U 1 t 2 + P x sup s ≤t 2 |X s − x | ≥ r, U 1 ≤ t 2 ≤ P x sup s ≤t 2 |Y λ s − x| ≥ r + P x U 1 ≤ t 2 = 1 4 + 1 − e −sup Nt 2 = 1 4 + 1 − e −c 9 t . By choosing t smaller if necessary, we get the desired result. ƒ Remark 3.6. It can be shown that the process Y λ is conservative. This fact has been used above through Lemma 3.8 of [BBCK]. 325

3.2 Lower bounds

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52