Elemen yang Memikul Gaya Aksial Tarik Elemen yang Memikul Momen Elemen yang Memikul Gaya Kombinasi

dengan λ c = E f r L y k . . 1 π 2.13 keterangan : A g adalah luas penampang bruto, mm 2 f cr adalah tegangan kritis penampang, Mpa f y adalah tegangan leleh material, Mpa Gambar 2.7 Panjang Tekuk Untuk Beberapa Kondisi Perletakan sumber SNI 03-1729-2002

2.5.2 Elemen yang Memikul Gaya Aksial Tarik

Komponen struktur baja yang memikul gaya tarik sering disebut batang tarik, harus direncanakan sedemikian rupa sehingga selalu terpenuhi hubungan : Nu ≤ Φ t .N n 2.14 Dimana : Nu adalah kuat tarik perlu, yaitu nilai gaya tarik akibat beban terfaktor, diambil dari nilai terbesar antara berbagai kombinasi pembebanan yang diperhitungkan. Nn adalah kuat tarik nominal, yaitu gaya tarik pada kondisi batas Universitas Sumatera Utara yang diperhitungkan. Untuk komponen yang memikul gaya tarik, kondisi batas yang diperhitungkan adalah : 1. Kelelahan penampang yielding, yaitu lelah pada seluruh penampang bruto. 2. Putus fracture, yaitu terjadi retakan atau sobekan pada luas penampang efektif, Kuat tarik rencana ditentukan oleh kedua kondisi diatas dengan ketentuan sebagai berikut : a. Kondisi lelah ΦN n = 0,9.A g .f y 2.15 b. Kondisi retakrobek ΦN n = 0,75.A e .f u 2.16 Dimana : A g = luas penampang bruto, mm 2 A e = luas penampang efektif, mm 2 F y = tegangan leleh nominal baja profil yang digunakan dalam desain, Mpa F u = tegangan putus yang digunakan dalam desain, Mpa

2.5.3 Elemen yang Memikul Momen

Sebuah balok yang memikul beban lentur murni terfaktor, Mu harus direncanakan sedemikian rupa sehingga selalu terpenuhi : M u ≤ Φ.M n 2.17 Dimana : M u = momen lentur terfaktor, N-mm Universitas Sumatera Utara Φ = faktor reduksi = 0,9 M n = kuat nominal dari momen lentur penampang, N-mm Geser pada balok Pelat badan yang memikul gaya geser perlu Vu harus memenuhi : V u ≤ Φ.V n 2.18 Dimana : Φ = faktor reduksi kuat gesar 0,9 V n = kuat geser nominal,

2.5.4 Elemen yang Memikul Gaya Kombinasi

Komponen struktur yang mengalami momen lentur dan gaya aksial harus direncanakan memenuhi ketentuan sebagai berikut : Untuk 2 , . ≥ n u N N φ 2.19 , 1 . . 9 8 . ≤         + + ny b uy nx b ux n u M M M M N N φ φ φ 2.20 Untuk 2 , . ≤ n u N N φ 2.21 , 1 . . . 2 ≤         + + ny b uy nx b ux n u M M M M N N φ φ φ 2.22 Keterangan : N u adalah gaya aksial tarik dan tekan terfaktor, N N n adalah kuat nominal penampang, N M ux , M uy adalah momen lentur terfaktor terhadap sumbu-x dan sumbu-y, N-mm Φ n = 0,90 lelah tarik Universitas Sumatera Utara Φ n = 0,75 fraktur tarik Φ n = 0,85 tekan Φ b = 0,90 lentur Faktor amplifikasi momen a. Faktor amplifikasi momen akibat kelengkungan kolom yang tak bergoyang. Besarnya δ b untuk masing-masing kolom dihitung sebagai berikut : δ b = 1 1 ≥       − el u m N N C 2.23 dimana : N u = gaya tekan aksial terfaktor N el = gaya tekan menurut Euler dengan klr terhadap sumbu lentur k ≤ 1,0 C m = faktor modifikasi momen, memperhitungkan distribusi momen yang tak seragam sepanjang kolom, dapat digunakan nilai-nilai sebagai berikut : i. Kolom tak bergoyang tanpa beban transversal C m = 0,6 – 0,4β m 2.24 Β m = M kecil M besar pada ujung-ujung kolom dengan harga 2.25 + : kelengkungan ganda pada kolom. - : kelengkungan tunggal pada kolom. ii. Kolom tak bergoyang dengan beban transversal C m = 1,0 : ujung-ujung sendi, dapat berotasi C m = 0,85 : ujung-ujung jepit, tidak dapat berotasi. b. Faktor amplifikasi momen akibat kelengkungan kolom yang bergoyang δ s . Faktor amplifikasi momen akibat goyangan lantai, δ s dapat dihitung : Universitas Sumatera Utara δ s = ∑       ∆ − HL N oh u 1 1 2.26 atau δ s = ∑ ∑ − 2 1 1 e u N N 2.27 dengan : ΣN u adalah jumlah gaya aksial tekan terfaktor akibat beban gravitasi untuk seluruh kolom pada satu tingkat yang ditinjau. N e2 adalah sama dengan N e1 namun dengan menggunakan k untuk komponen struktur bergoyang, k ≥ 1,0 Δ oh adalah simpangan antar lantai pada tingkat yang sedang ditinjau. ΣH adalah jumlah gaya horizontal yang menghasilkan Δ oh pada tingkat yang di tinjau. L adalah tinggi tingkat.

2.5.5 Sambungan Baut