Boundary estimates getdoc58fb. 309KB Jun 04 2011 12:04:24 AM

Together with 2.9 we find that I z P u + ΦP u ≤ z + zP u loguz + 2c ϕ , which is strictly less than z when u is small enough. Since Φ hc P u = Φ hc δ ; = 0, it follows that the minimisers of I z + Φ + Φ hc are non-degenerate. No further changes are required for the proof of the first part of the variational principle.

4.3 Boundary estimates

We now work towards a proof of the reverse part of the variational principle. In this section, we con- trol the boundary effects that determine the difference of H n,per and H n, ω . The resulting estimates will be crucial for the proof of Proposition 4.11. For every ω ∈ Ω and every Borel set ∆ let S ∆ ω = τ ∈ Dω : Bτ ∩ ∆ 6= ; and Bτ \ ∆ 6= ; be the set of all triangles τ ∈ Dω for which Bτ crosses the boundary of ∆. We start with a lemma that controls the influence on S ∆ when two configurations are pasted together. Lemma 4.5. Let ∆ be a not necessarily bounded Borel set in R 2 , ζ ∈ Ω ∗ ∪ {;} a configuraton with ζ ∂ ∆ = ;, and ω ∈ Ω. Then for each τ ∈ S ∆ ζ ∆ ∪ω ∆ c and each x ∈ τ∩∆ there exists some τ ′ ∈ S ∆ ζ with x ∈ τ ′ . Proof: Let ∆, ζ and ω be given. If ζ is empty, there exists no x ∈ τ ∆ ⊂ ζ ∆ , so that the statement is trivially true. So let ζ ∈ Ω ∗ and suppose there exists some τ ∈ S ∆ ζ ∆ ∪ ω ∆ c with τ ∆ 6= ;. Let x ∈ τ ∆ . Since ζ ∂ ∆ = ;, x does in fact belong to the interior of ∆. This implies that Bτ ′ ∩ ∆ 6= ; for each τ ′ ∈ Dζ containing x. Therefore we only need to show that Bτ ′ \ ∆ 6= ; for at least one such τ ′ . Suppose the contrary. Then B τ ′ ⊂ ∆ whenever x ∈ τ ′ ∈ Dζ. This means that the Delaunay triangles containing x are completely determined by ζ ∆ . This gives the contradiction ; 6= {τ ∈ S ∆ ζ ∆ ∪ ω ∆ c : τ ∋ x} = {τ ′ ∈ S ∆ ζ : τ ′ ∋ x} = ; , and the proof is complete. ◊ The following proposition is the fundamental boundary estimate. It bounds the difference of Hamil- tonians with periodic and configurational boundary conditions in terms of S n := cardS Λ n . Proposition 4.6. There exists a universal constant γ ∞ such that |H n,per ζ − H n, ω ζ| ≤ γc ϕ S n ω + S n ζ for all n ≥ 1 and all ζ, ω ∈ Ω ∗ ∪ {;} with ζ ∂ Λ n = ω ∂ Λ n = ;. Proof: Let n, ζ, ω be fixed and A = τ ∈ Dζ Λ n ∪ ω Λ c n : Bτ ∩ Λ n 6= ; , B = τ ∈ Dζ n,per : cτ ∈ Λ n . In view of 3.1 and 3.5 we have H n, ω ζ = P τ∈A ϕτ and H n,per ζ = P τ∈B ϕτ. Since ϕ is bounded by c ϕ , we only need to estimate the cardinalities of A \ B and B \ A. We note that 2453 A \ B ⊂ S Λ n ζ Λ n ∪ ω Λ c n and B \ A ⊂ S Λ n ζ n,per . So we can apply Lemma 4.5 to both ∆ = Λ n and ∆ = Λ c n to obtain that the set of points belonging to a triangle in A \ B is contained in the set of points belonging to a triangle of S Λ n ζ ∪ S Λ n ω. Hence, card S τ∈A\B τ ≤ 3S n ζ + S n ω. By Lemma 2.1, it follows that cardA \ B ≤ 6S n ω + S n ζ. To estimate the cardinality of B \ A we may assume that ζ n 6= ;. The periodic continuation ζ n,per then contains a lattice, and this implies that every triangle of D ζ n,per has a circumscribed disc of diameter at most p 2v n . Hence, each τ ∈ B \ A is contained in Λ 5n+2 , the union of 5 2 translates of Λ n up to their boundaries. Applying Lemma 4.5 to each of these translates we conclude that the number of points that belong to a triangle of B \ A is bounded by 3 · 5 2 S n ζ. Using Lemma 2.1 again we find that cardB \ A ≤ 150S n ω + S n ζ, and the result follows with γ = 156. ◊ The following immediate corollary will be needed in the proof of Theorem 3.3. Corollary 4.7. There exists a constant C ∞ such that |H n, ω ;| ≤ C S n ω for all n ≥ 1 and ω ∈ Ω ∗ with ω ∂ Λ n = ;. The next proposition exhibits the fundamental role of the temperedness condition 2.4 combined with stationarity for controlling the boundary effects. Proposition 4.8. For every P ∈ P tp Θ , v −1 n S n → 0 in L 1 P and P-almost surely. Proof: For each i ∈ R 2 we consider the shifted unit square Ci = Λ + i and define the random variable Z i = card τ ∈ D· : Bτ ∩ Ci 6= ; . Then S n ≤ X i ∈I n \I n −1 Z i , 4.3 where I n = Λ n ∩ Z 2 + 1 2 , 1 2 . Note that card I n = v n . As in 4.2 we have Z Z d P = Z µ P dτ Λ ̺τ = Z µ P dτ 1 + 4̺τ + π̺τ 2 . The last term is finite by the temperedness of P. So, each Z i is P-integrable. Since Z i = Z ◦ ϑ i , the two-dimensional ergodic theorem implies that v −1 n P i ∈I n Z i converges to a finite limit ¯ Z, both P-almost surely and in L 1 P. This implies that v −1 n P i ∈I n \I n −1 Z i tends to zero P-almost surely and in L 1 P. The result thus follows from 4.3. ◊

4.4 Temperedness and block average approximation

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52