Preliminaries A 0, for all x ∈ E. 1 Cramer functional

Large deviations of an irreducible Markov chain 541 Feynman-Kac semigroup. This result is based mainly on the increasing continuity of the conver- gence parameter due to de Acosta [5]. This paper is organized as follows. In the next section we present necessary backgrounds and calculate the Legendre transform of the Cramer functional. We prove in section 3 the lower semi-continuity of the Cramer functional, which gives us the desired identification of the rate function of de Acosta-Ney [6] and as corollary we obtain the lower bound of large deviations for the occupation measures. Finally in section 4 we present some remarks about the upper bound of Ney-Nummelin [14] and provide a very simple counter-example to the upper bound of large deviations for unbounded additive functionals. 2 Preliminaries and Legendre transform of the Cramer func- tional

2.1 Preliminaries

We recall some known facts about irreducible Markov chains from Nummelin [15] and Meyn- Tweedie [13]. Let Kx, d y be a nonnegative kernel on a measurable space E, B where B is countably gener- ated. It is said irreducible if there is some non-zero nonnegative σ-finite measure µ such that ∀A ∈ B with µA 0, +∞ X n=1 K n

x, A 0, for all x ∈ E. 1

Such measure µ is said to be a maximal irreducible measure of K, if µK ≪ µ. All maximal irreducible measures of K are equivalent. Below µ is some fixed maximal irreducible measure of K. A couple s, ν where s ≥ 0 with µs := R E sxdµx 0 and ν a probability measure on E is said K-small, if there is some m ≥ 1 and constant c 0 such that K m x, A ≥ cs ⊗ νx, A = csxνA, x ∈ E, A ∈ B 2 A real measurable function s ≥ 0 with µs 0 is said to be K-small, if there is some probability measure such that s, ν is K-small. A subset A ∈ B with µA 0 is said K-small if 1 A does. By Nummelin [15, Theorem 2.1], any irreducible kernel K has always such a small couple s, ν. A non-empty set F ∈ B is said K-closed, if Kx, F c = 0 for all x ∈ F . For every K-closed F , µF c = 0 by the irreducibility of K. According to Nummelin [15, Definition 3.2, Proposition 3.4 and 4.7], the convergence parameter of K, say RK, is given by : for every K-small couple s, ν, RK = sup r ≥ 0 : +∞ X n=0 r n ν K n s +∞ = sup r ≥ 0 : ∃K-closed F ∀K-small s, +∞ X n=0 r n K n s +∞, x ∈ F . 3 It is well known that 0 ≤ RK +∞. 542 Electronic Communications in Probability Lemma 2.1. For every K-small couple s, ν, − log RK = lim sup n→∞ 1 n log ν K n s = inf K−cl osed F sup x∈F lim sup n→∞ 1 n log K n sx = esssup x∈E lim sup n→∞ 1 n log K n sx. 4 Here and hereafter esssup x∈E is taken always w.r.t µ. Its proof is quite easy, so omitted.

2.2 Cramer functional

Let X n n≥0 be a Markov chain valued in E, defined on Ω, F , F n , P x x∈E . Throughout this paper we assume always that its transition kernel Px, d y is irreducible, and µ is a fixed maximal irreducible measure of P. For every V ∈ rB the space of all real B -measurable functions on E, consider the kernel P V x, d y := e V x Px, d y. We have the following Feynman-Kac formula, P V n f x = E x f X n exp n−1 X k=0 V X k , 0 ≤ f ∈ rB . 5 It is obvious that P V is irreducible with the maximal irreducible measure µ. Define now our Cramer functional ΛV = − log RP V . 6 Since RP V ∈ [0, +∞ by [15, Theorem 3.2], ΛV −∞. By 5 and Lemma 2.1, we have ΛV = lim sup n→∞ 1 n log E ν sX n exp n−1 X k=0 V X k = esssup x∈E lim sup n→∞ 1 n log E x sX n exp n−1 X k=0 V X k 7 for every P V -small couple s, ν. From the above expression we see by Hölder’s inequality that Λ : rB → −∞, +∞] is convex. We can now recall the universal lower bound of large deviation in de Acosta [5] and de Acosta-Ney [6]. Theorem 2.2. [5, 6] Let f : E → B be a measurable function with values in a separable Banach space B, k · k. Then for every open subset G of B and every initial measure ν, lim inf n→∞ 1 n log P ν 1 n n−1 X k=0 f X k ∈ G ≥ − inf z∈G Λ ∗ f z, 8 where Λ f y := Λ〈 y, f 〉, y ∈ B ′ the topological dual space of B, and Large deviations of an irreducible Markov chain 543 Λ ∗ f z = sup y∈B ′ 〈 y, z〉 − Λ f y. 9 Here 〈 y, z〉 denotes the duality bilinear relation between B and B ′ . The main objective is to identify Λ ∗ f by means of the Donsker-Varadhan entropy.

2.3 Legendre transform of the Cramer functional on a weighted space

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52