The optimal switching representation property

Solution of Multidimensional reflected BSDEs 123

3.1 The optimal switching representation property

We first give a key representation property for the solution of 2.2 under the following assump- tion: • H3 For i ∈ I , the i−th component of the random driver f depends only on y i and the i− th column of the variable z: f i t, y, z = f i t, y i , z i , i, t, y, z ∈ I × [0, T ] × R d × R q×d . Observe that H1 =⇒ H3 =⇒ H2. We first provide the existence of a solution to 2.2 under Assumption H3. Proposition 3.1. Under H 3, the BSDE 2.2 has at least one solution. Proof. Since H3 is stronger than H2, the existence of a solution is provided by Theorem 3.2 in [ 3 ]. Due to the the particular form of switching oblique reflections and for sake of completeness, we decide to report here a simplified sketch of proof. We use Picard iteration. Let Y .,0 , Z .,0 ∈ [S 2 × H 2 ] d be the solution to the following BSDE without reflection: Y i ,0 t = ξ i + Z T t f i s, Y i ,0 s , Z i ,0 s ds − Z T t Z i ,0 s .dW s , 0 ≤ t ≤ T, i ∈ I . 3.1 For i ∈ I and n ≥ 1, define recursively Y i ,n as the first component of the unique solution see Theorem 5.2 in [ 1 ] of the reflected BSDE      Y i ,n t = ξ i + R T t f i s, Y i ,n s , Z i ,n s ds − R T t Z i ,n s .dW s + K i ,n T − K i ,n t , 0 ≤ t ≤ T , Y i ,n t ≥ max j∈I {Y j ,n−1 t − C i j t } , 0 ≤ t ≤ T , R T [Y i ,n t − max j∈I {Y j ,n−1 t − C i j t }]dK i ,n t = 0 . For any i ∈ I , one easily verifies by induction that the sequence Y i ,n n∈N is nondecreasing and upper bounded by ¯ Y the first component of the unique solution to ¯ Y t = d X i= 1 |ξ i | + Z T t d X i= 1 | f i s, ¯ Y s , ¯ Z s |ds − Z T t ¯ Z s .dW s , 0 ≤ t ≤ T. For any i ∈ I , by Peng’s monotonic limit Theorem see Theorem 3.6 in [ 5 ], the limit ˙ Y i of Y i ,n n is a càdlàg process and there exists ˙ Z i , ˙ K i ∈ H 2 × K 2 such that    ˙ Y i t = ξ i + R T t f i s, ˙ Y i s , ˙ Z i s ds − R T t ˙ Z i s .dW s + ˙ K i T − ˙ K i t , 0 ≤ t ≤ T , ˙ Y i t ≥ max j∈I { ˙ Y j t − C i j t } , 0 ≤ t ≤ T . 3.2 In order to prove that ˙ Y , ˙ Z , ˙ K is the minimal solution, we then introduce, in the spirit of [ 6 ] and for any i ∈ I , the smallest f i -supermartingale ˜ Y i with lower barrier max j6=i { ˙ Y j − C i j } defined as the solution of      ˜ Y i t = ξ i + R T t f i s, ˜ Y i s , ˜ Z i s ds − R T t ˜ Z i s .dW s + ˜ K i T − ˜ K i t , 0 ≤ t ≤ T , ˜ Y i t ≥ max j6=i { ˙ Y j t − C i j t } , 0 ≤ t ≤ T , R T [ ˜ Y i t − − max j6=i { ˙ Y j t − − C i j t }]d ˜ K i t = 0 , 0 ≤ i ≤ d . 3.3 124 Electronic Communications in Probability For i ∈ I , we directly deduce from 3.2 that ˙ Y i ≥ ˜ Y i , and, since Y .,n n∈N is increasing, a direct comparison argument leads to Y i ,n ≤ ˜ Y i , for n ∈ N. Therefore, we get ˙ Y = ˜ Y so that ˙ Y satisfies 2.2. It only remains to prove that ˙ Y is continuous. In the sequel, we consider ˜ Ω a measurable subset of Ω, such that P ˜ Ω = 1 and 3.3-2.1 hold everywhere on ˜ Ω. We now look towards a contradiction. We suppose that ˙ Y is not continuous, i.e. there exists a measurable subset B of ˜ Ω satisfying P B 0 and such that ∀ω ∈ B , ∃{tω, i ω} ∈ [0, T ] × I s.t. ∆ ˙ Y i ω tω := ˙ Y i ω tω − ˙ Y i ω tω − 6= 0 . We fix ω ∈ B and deduce from 3.3 that ∆ ˙ Y i ω tω = −∆K i ω tω 0 so that ˙ Y i ω tω − = ˙ Y i 1 ω tω − − C i ωi 1 ω tω for some i 1 ω 6= i ω. This leads directly to ˙ Y i 1 ω tω − = ˙ Y i ω tω − + C i ωi 1 ω tω ˙ Y i ω tω + C i ωi 1 ω tω ≥ ˙ Y i 1 ω tω , which implies ∆ ˙ Y i 1 ω tω 0. The exact same argument leads to the existence of an integer i 2 ω ∈ I such that i 2 ω 6= i 1 ω and ˙ Y i 2 ω tω − = ˙ Y i 1 ω tω − + C i 1 ωi 2 ω tω ˙ Y i 1 ω tω + C i 1 ωi 2 ω tω ≥ ˙ Y i 2 ω tω , so that ∆ ˙ Y i 2 ω tω 0. Since I is finite, we get, after repeating this argument at most d times, the existence of a finite sequence i k ω 0≤k≤nω such that i nω ω = i ω and ˙ Y i k ω tω − = ˙ Y i k+ 1 ω tω − − C i k ωi k+ 1 ω tω for any k nω. Therefore, we have nω X k= 1 C i k− 1 ωi k ω tω = 0 . 3.4 Furthermore, using recursively the structural condition 2.1 iii, we easily compute nω X k= 1 C i k− 1 ωi k ω tω ≥ C i ωi 1 ω tω + C i 1 ωi nω ω tω . Since i nω ω = i ω, we deduce from 2.1 iii and i that nω X k= 1 C i k− 1 ωi k ω tω C i ωi ω tω = 0 . 3.5 Since equations 3.4 and 3.5 are satisfied for any ω ∈ B, this leads to a contradiction and concludes the proof. Under H3, a slight generalization of Theorem 3.1 in [ 4 ] allows to represent the process ˙ Y i i∈I as the value process of an optimal switching problem on a family of one-dimensional BSDEs. More precisely, we consider the set of admissible 3 strategies A consisting in the sequence a = θ k , α k k≥ with 3 Our definition of admissible strategies slightly differs from the one given in [ 4 ] Definition 3.1. Indeed, the authors assume that N is in L 2 F T rather than A ∈ S 2 . In fact, it is clear that in the context of constant cost process C satisfying 2.1, both definitions are equivalent. Solution of Multidimensional reflected BSDEs 125 • θ k k≥ a nondecreasing sequence of stopping times valued in [0, T ], and such that there exists an integer valued random variable N a , F T measurable and θ N a = T , P − a.s., • α k k≥ a sequence of random variables valued in I such that α k is F θ k -measurable for all k ≥ 0, • the process A a defined by A a t := P k≥ 1 C α k− 1 α k θ k 1 θ k ≤t belonging to S 2 . The state process associated to a strategy a ∈ A is denoted a t 0≤t≤T and defined by a t = X k≥ 1 α k− 1 1 θ k− 1 ,θ k ] t , 0 ≤ t ≤ T . For t, i ∈ [0, T ] × I , we also define A t ,i the subset of admissible strategies restricted to start in state i at time t. For t, i ∈ [0, T ] × I and a ∈ A t ,i , we consider U a , V a ∈ S 2 × H 2 the unique solution of the switched BSDE: U a r = ξ a T + Z T r f a s s, U a s , V a s ds − Z T r V a s .dW s − A a T + A a r , t ≤ r ≤ T . As in Theorem 3.1 in [ 4 ], the correspondence between Y and the switched BSDEs is given by the following proposition which provides, as a by-product, the uniqueness of solution to 2.2 under H3. Proposition 3.2. Under H 3, there exists a ∗ ∈ A t ,i such that ˙ Y i t = U a ∗ t = ess sup a∈A t ,i U a t , t, i ∈ [0, T ] × I . Proof. The proof follows from the exact same reasoning as in the proof of Theorem 3.1 in [ 4 ] having in mind that in our framework, the driver f and the costs C are random. This implies that N a ∗ , the number of switch of the optimal strategy, is only almost surely finite. This is the only difference with [ 4 ] where N a ∗ belongs to L 2 F T .

3.2 The contraction operator

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52