Numerical experiments Grosan Crina. 139KB Jun 04 2011 12:08:43 AM

adaptive representation of solutions 283 k = 0 endif else if m dominates c then replace c with m and add m to the archive else if m is dominated by any member of the archive discard m else apply test c, m, archive to determine which becomes the new current solution and whether to add m to the archive endif endif endif until a termination criterion has been reached

V. Numerical experiments

In this section several experiments with Adaptive PAES and PAES are carried out. For these experiments two test functions reputed as difficult proposed in [2] ZDT3 and ZDT4 are used. Each test function considered in this section is built by using three functions f 1 , g, h. Biobjective function T considered here is: T x = f 1 x, f 2 x. The optimization problem is: Pareto optimal set corresponding to the test function ZDT 3 presents a discrete feature. Pareto optimal front consists of several noncontiguous convex parts. The involved functions are: 1 1 1 1 2 2 1 1 1 10 1 1 9 1 f sin g f g f g , f h m x x . , x g x x f m i i m π − − = − ⋅ + = = ∑ = K where m = 30 and x i ∈ [0,1], i = 1,2,…m. Pareto optimal front is characterized by the equation g x = 1.    = = , , , , , , , , 1 2 1 1 2 2 m m m x x x x x g x f h x x g x f where x T Minimize K K K adaptive representation of solutions 284 The introduction of the function sin in the expression of function h causes discontinuity in the Pareto optimal front. However, there is no discontinuity in the parameter space. The test function ZDT 4 contains 21 9 local Pareto optimal fronts and, therefore, it tests the EA ability to deal with multimodality. The involved functions are defined by: g f g , f h x cos x m x . , x g x x f m i i i m 1 1 2 2 2 1 1 1 1 4 10 1 10 1 − = − + − + = = ∑ = π K where m = 10, x 1 ∈ [0,1] and x 2 ,…,x m ∈ [-5,5]. Global Pareto optimal front is characterized by the equation g x = 1. The best local Pareto optimal front is described by the equation g x = 1.25. Note that not all local Pareto optimal sets are distinguishable in the objective space. Each algorithm was run once on each test function. Experiment 1 In this experiment the performances of Adaptive PAES and Standard PAES on test function ZDT3 are compared. Algorithm parameters for PAES are given in Table 1. Archive size 100 Number of iterations 25000 Chromosome length 900 genes Mutation 1 mutation chromosome Table 1. Algorithm parameters for PAES. adaptive representation of solutions 285 Algorithm parameters for Adaptive PAES are given in Table 2. Archive size 100 Number of iterations 25000 Precision 0.00000001 Mutation 0.3 mutations chromosome Number of alphabets 30 Number of 5 Table 2. Algorithm parameters for Adaptive PAES. In Figure 1 the nondominated solutions for PAES and Adaptive PAES on test function ZDT3 in objectives space are depicted. Figure 1. a Nondominated solutions for PAES. b Nondominated solutions for Adaptive PAES. Standard PAES is able to detect only 3 optimal Pareto regions. Adaptive PAES detects 5 optimal Pareto regions. Experiment 2 In this experiment the performances of Adaptive PAES and Standard PAES on test function ZDT4 are compared. This function is highly multimodal and it tests adaptive representation of solutions 286 the ability of evolutionary algorithms to deal with multimodal search spaces. Algorithm parameters for PAES are given in Table 3. Archive size 100 Number of iterations 25000 Chromosome length 300 genes Mutation 8 mutation chromosome Table 3. Algorithm parameters for PAES. Algorithm parameters for Adaptive PAES are given in Table 4. Archive size 100 Number of iterations 25000 Representation precision 0.00000001 Mutation 0.3 mutations chromosome Number of alphabets 30 Number of mutations until the representation of current solution is changed. 5 Table 4. Algorithm parameters for Adaptive PAES. In Figure 2 the nondominated solutions for PAES and Adaptive PAES on test function ZDT4 in objectives space are depicted. Figure 2. Nondominated solutions for PAES. and Adaptive PAES. On this test function Adaptive PAES clearly outperforms Standard PAES. adaptive representation of solutions 287

VI. Conclusions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52