Simpulan Saran SIMPULAN DAN SARAN

52

BAB V SIMPULAN DAN SARAN

A. Simpulan

Berdasarkan hasil dari uraian pembahasan, dapat ditarik kesimpulan sebagai berikut: 1. Konsentrasi logam Cu, Cd dan Pb dalam media cair setengah MS berpengaruh signifikan terhadap pertambahan panjang akar, namun pada parameter pertambahan jumlah akar logam Cu dan Cd tidak berpengaruh signifikan. Konsentrasi Cu yang paling optimal dalam menghambat pertumbuhan akar adalah 200 µM, sedangkan konsentrasi Cd yang paling menghambat pertumbuhan akar yaitu 300 µM dan pada cekaman Pb konsentrasi yang secara maksimal menghambat konsentrasi 100 µM. 2. Terdapat perbedaan tingkat parameter kerusakan anatomi akar, akumulasi logam dan warna daun pada setiap konsentrasi dan jenis logam dalam media. Ketiga parameter tersebut tidak tergantung satu sama lain, yang berarti meskipun dicekam oleh logam dan konsentrasi yang sama tiap parameter dapat menunjukan hasil yang berbeda. Pada cekaman logam Cu besarnya akumulasi logam dalam akar ekuivalen dengan besarnya konsentrasi Cu dalam media. Pada cekaman logam Cd akumulasi logam dalam akar tidak ekuivalen dengan besarnya konsentrasi Cd dalam media. Pada cekaman logam Pb besarnya akumulasi logam dalam akar ekuivalen dengan besarnya konsentrasi 3. Berdasarkan analisis kuantitatif, tembakau mampu mentoleransi cekaman logam Cu pada level ≤ 100 µM, Cd pada konsentrasi 50 µM dan Pb pada konsentrasi ≤ 5 µM. Berdasarkan analisis kualitatif tembakau mampu mentoleransi cekaman pada konsentrasi logam Cu pada level ≤ 50 µM, Cd pada konsentrasi 50 µM dan Pb pada konsentra si ≤ 20 µM.

B. Saran

Berdasarkan hasil penelitian yang diperoleh dapat dirumuskan saran sebagai berikut: 1. Untuk penelitian sejenis perlu dilakukan analisis AAS baik pada bagian akar root maupun bagian batang daun shoot untuk mengetahui secara detail pola translokasi logam. 2. Pada penelitian serupa sebaiknya dilakukan uji lanjut yaitu re-growth analysis untuk mengetahui responsif tidaknya tembakau terhadap pemulihan pertumbuhan akar pada media nutritif non logam. 3. Perlu dilakukan penelitian lanjut guna mengetahui respon tembakau Nicotiana tabacum L. secara molekuler dan mikroanatomis terhadap cekaman logam berat Cu, Cd dan Pb DAFTAR PUSTAKA Anaspec Inc. 2008. Phytochelatin Peptide. Fremont: Anaspec Inc [Anonim]. 2013. Fact Sheet-Nicotiana tabacum L. Di dalam www. flora. sa. gov. auefsalucidSolanaceaeNicotiana20specieskeyAustralian20Nicotia na0sspeciesMediaHtmlNicotiana_tabacum.htm [7 Maret 2013] [Anonim].2013. List of hyperaccumulator plants. Di dalam http :en. wikipedia. orgwindex. php?oldid=402229528 [ 9 September 2013] [Anonim]. 2013. Source, level and movememnts of lead in the environment. Di dalam http:www4.hmc.edu:8001ChemistryPbresourcespb20sources.pdf [7 juni 2013] [Anonim]. 2013. Tembakau. Di dalam http : dishutbunnak. Majalengkakab .go.idindex.php?option=com_contentview=articleid=23:tembakauca tid=13:potensi-perkebunanItemid=13 [7 november 2013] Alaoui-Sossé B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, Badot PM. 2004. Effect of copper on growth in cucumber plants Cucumis sativus and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166 :1213 –1218. Alkhatib R, Creamer R, Lartey RT, Ghoshroy S. 2011. Effect of lead Pb on the systemic movement of RNA viruses in tobacco Nicotiana tabacum var. Turkish. Plant Cell Rep 30:1427 –1434 a. Alkhatib R, Maruthavanan J, Ghoshroy S, Steiner R, Sterling T, Creamer. 2011. Physiological and ultrastructural effects of lead on tobacco. Biol Plantarum 56 : 711-716 b. Anggraito YU, Suharsono, Pardal SJ, Sopandie D. 2012. Transformasi genetik Nicotiana benthamiana L dan kedelai dengan gen MaMt 2 penyandi metallothionein Tipe II dari Melastoma malabathricum L. Forum Pascasarjana 35:179-188. Arduini I, Godbold DL, Onnis A. 1995. Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. Seedlings. Tree Physiol 15: 411-415. Ayodele JT, Kiyawa SA. 2010. Haemanthus and Mitracarpus scaber as bioaccumulators of heavy metals. J Int Env App Sci, 5: 878-882. Baranowska-Morek A, Wierzbicka M. 2004. Localization of lead in root tip of Dianthus carthusianorum. Acta Biol Cracoviensia Ser Botanica 46: 45-56. Blaylock MJ, Salt D, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley B, Raskin A. 1997. Enhanced accumulation of Pb in indian mustard by soil-applied chelating agents. Environ Sc Technol 31: 860-865. Buchanan BB, Gruissem W, Jones RL. 2000. Biochemistry Molecular Biology of Plants. Maryland: American Society of Plant Physiologists Butare L, Rao I, Lepoivre P, Polania J, Cajiao C, Cuasquer J, Beebe S. 2011. New genetic sources of resistance in the genus Phaseolus to individual and combined aluminium toxicity and progressive soil drying stresses. Euphytica 181:385-404. Cheng S. 2003. Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res 10: 256 - 264 Cobbet CS. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol, 123: 825 –832. Fry SC, Miller JC, Dumville JC. 2002. A proposed role for copper ions in cell wall loosening. Plant Soil 247: 57 –67. Ganapathi TR, Suprasanna P, Rao PS, Bapat VA. 2004. Tobacco Nicotiana tabacum L- A model system for tissue culture interventions and genetic engineering. Ind J Biotech 3: 171-184. Garg N, Singla P. 2011. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9: 303 –321. Ghelich S 1, Zarinkamar, Fatemeh. 2013. Histological and ultrastructure changes in Medicago sativa in response to lead stress. Phyto J 2: 20-29 Gonçalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV, Bisognin DA, Dressler VL, de Moraes Flores EM, Nicoloso FT. 2009. Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions [Abstrak]. Di akses berkala pada http:www.sciencedirect.comsciencearticlepiiS0981942809001053 Gori P, Schiff S, Santandrea G, Bennici A. 1998. Response of in vitro cultures of Nicotiana tabacum L. to copper stress and selection of plants from Cu- tolerant callus. Plant Cell Tiss Organ Cult 53: 161 –169. Grispen VMJ, Hakvoort HWJ, Bliek T, Verkleij JAC, Schat H. 2009. Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Di dalam: Bouter LM, editor. Exploring Cadmium Phytoextraction with Brassica napus and Nicotiana tabacum: Breeding and Selection versus Genetic Engineering. Universiteit Amsterdam. Hlm 78-96. Hede AR, Skovmand B, Lopez-Cesatia J. 2001. Acid soils and aluminum toxicity. App Physiol Wheat Breeding Chapter 15: 172-182. Herman DZ. 2006. Tinjauan terhadap tailing mengandung unsur pencemar arsen As, merkuri Hg, timbal Pb, dan kadmium Cd dari sisa pengolahan bijih logam. J Geologi Indo 1: 31-36. Hidayati N. 2005. Fitoremediasi dan potensi tumbuhan hiperakumulator [ulasan]. Hayati 12: 35-40. Hock B, Wolf NM. 2005. Characteristic of plant life: hazard from pollutant. Di dalam: Hock B, Elstner EF, editor. Plant Toxicology fourth edition. New York: Marcel Dekker. Järup L. 2003. Hazards of heavy metal contamination. Brit Med Bull 68: 167-182. Jiang W, Liu D, Liu X. 2001. Effects of copper on root growth, cell division and nucleolus of Zea mays. Biol Plant 44:105-109. John DA, Leventhal JS. 1995. Bioavailability of metals. Di dalam http:pubs.usgs.govof1995ofr-95-0831CHAP2.pdf diakses pada 17 September 2013 Joshi A, Kothari SL. High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons Capsicum annuum L. Plant Cell Tiss Organ Cult 88:127 –133. Kelkar TS, Bhalerao SA.2013. Beneficiary effect of arbuscular mycorrhiza to Trigonella Foenum-Graceum in contaminated soil by heavy metal. Res J Recent Sci 2:29-32. Kim YN, Kim JS, Seo SG, Lee Y, Baek SW, Kim IS, Yoon HS, Kim KR, Kim SH, Kim KH. 2011. Cadmium resistance in tobacco plants expressing the MuSI gene. Plant Biotechnol Rep 5:323 –329. Kopittke P, Asher CJ, Kopittke RA, Menzies NW. 2007. Toxic effects of Pb 2+ on growth of cowpea Vigna unguiculata. Envir Poll 150: 280-287. Krystofova O, Zitka O, Krizkova S, Hynek D, Shestivska V, Adam V, Hubalek V, Mackova M, Macek T, Zehnalek J. 2012. Accumulation of cadmium by transgenic tobacco tlants Nicotiana tabacum L. carrying yeast metallothionein gene revealed by electrochemistry. Int. J. Electrochem. Sci. 7: 886-907 Kumar G, Tripathi R. 2008. Lead-induced cytotoxicity and mutagenicity in grass pea. Turk J Biol 32: 73-78. Kurtyka R, Małkowski E, Kita A, Karcz W. 2008. Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Polish of Environ Study 17:51-56. Lequeux H, Hermans C, Lutts S, Verbruggen N. 2010. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48: 673-682. Levine M. 2013. Effect of pH on Heavy Metal Concentration [artikel]. Dalam http:www.nist.govdataPDFfilesjpcrd444.pdf diakses pada 26 September 2013 Li L, Cheng H, Peng J, Cheng S. 2010. Construction of a plant expression vector of chalcone synthase gene of Ginkgo biloba L. and its genetic transformation into tobacco. Chin Agric 4:456-462. Liu X P, Peng K J, Wang A G, Lian C L, Shen Z G. 2010. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 78: 1136 –1141. Lu Z, Zhi Y, Wang Z, Hua Y, Hong G, Camada E, Yao Y. Absorption and accumulation of heavy metal pollutants in roadside soil-plant systems –a caase study for western inner Mongolia. Di dalam: Luo Y. Novel Approaches and Their Applications in Risk Assessment. Shanghai: Intech China. Longchamp M, Angeli N, Castrec-Rouelle M. 2013. Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362:107-117. Luo Y, Wei Q, Huang M, Xu Y, Chen F. 2006. Isolation of a genomic DNA for Jatropha curcas ribosome inactivating protein and its tobacco transformation. J Shanghai Univ 105: 461-464. Maheshwari P, Kovalchuk I. 2011. Combination of ammonium nitrate, cerium chloride and potassium chloride salts improves Agrobacterium tumefaciens-mediated transformation of Nicotiana tabacum. Plant Biotech Rep [terhubung berkala]. http:springerlink.com diakses pada 25 April 2013 Mahmood T, Islam KR, Muhammad S. 2007. Toxic effects of heavy metal on early growth and tolerance of cereal crops. Pak J Bot 39: 451-462 Manara A. 2012. Plants responses in heavy metal toxicity. Di dalam: Furini A, editor. Plants and heavy metals. SpringerBriefs in Biometals: 27-53 Manggara PP, Denni W, Sabtanto JS, Asep A. 2007. Penyelidikan potensi bahan pada tailing PT. Freeport Indonesia di Kabupaten Mimika. Prosiding Pemaparan Hasil Kegiatan Lapangan dan Non Lapangan Tahun 2007. Pusat Sumber Daya Geologi. hlm 1-9. Marschner H. 2012. Mineral Nutrition of Higher Plants Third edition. Academic Press: London Mikkelsen MD, Pedas P, Schiller M, Vincze E, Mills RF, Borg S, Møller A, Schjoerring JK, Williams LE, Baekgaard L, Holm PB, Palmgren MG. 2012. Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains. Plos one 7: 1-13. Murjanto D. 2011. Karakterisasi dan perkembangan tanah pada lahan reklamasi bekas tambang batu bara PT Kaltim Prima Coal [tesis] Bogor: Program Pascasarjana, Institut Pertanian Bogor. Narusaka Y, Narusaka M, Yamasaki S, Iwabuchi M. 2012. Methods to transfer foreign genes to plants. Di dalam Çiftçi YO, editor. Transgenic Plants - Advances and Limitations. Shanghai: Intech. hlm 173-188. Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA. 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American J Plant Sciences 3: 1476-1489. [NRSC] Natural Resources Conservation Service. 2000. Heavy Metal Soil Contamination. Urban Technical Note 3: 1-7 O’Neill P. 1994. Environmental Chemistry. Plymouth: Chapman Hall. Perry CT, Divan AM Jr, Rodriguez MTR, Atz VL. 2010. Psidium guajava as a bioaccumulator of nickel around an oil refinery, southern Brazil. Ecotoxic Environ Safety 73 : 647 –654. Petrescu I, Petolescu C, Coradini C, Lazar A, Banu C, Velicevici G. 2011. Studies concerning the lead effect in vitro and in vivo on the plants development of Lycopersicum esculentum L. J Hortic Forest Biotech 15:147-150. Piano LD, Abet M, Sorrentino C, Barbato L, Sicignano M, Cozzolino E, Cuciniello A. 2008. Uptake and distribution of lead in tobacco Nicotiana tabacum L.. J Applied Bot Food Qual 82:21-25. Pomponi M, Censi V, Girolamo VD, De Paolis A, Di Toppi LS, Aromolo R, Costantino P, Cardarelli M. 2006. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd 2+ tolerance and accumulation but not translocation to the shoot. Planta 223: 180 –190. Poschenrieder C, Gunse B, Barcelo J. 1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90: 1365-1371. Quiroga M, Guerrero C, Botella MA, Barcelo´ A, Amaya I, Medina M, Alonso FJ, Forchetti SM, Tigier H, Valpuesta V. 2000. A Tomato Peroxidase Involved in the synthesis of lignin and suberin. Plant Physiol 122: 1119 – 1127. Ratheesh CP, Abdussalam A, Nabeesa S, Puthur JT. 2010. Distribution of bio- accumulated Cd and Cr in two Vigna species and the associated histological variations. J Stress Physiol Biochem 6: 4-12. Reddy KJ, Wang L, Gloss SP. 1995. Solubility and mobility of copper and zinc and lead in acidic environment. Plant Soil 171: 53-58. Redjala T, Sterckeman T, Morel JL. 2009. Influence of plant cadmium content on root cadmium upt ake [prosiding]. Dipresentasikan pada “Proceedings of the International Plant” Nutrition Colloquium XVI University of California Reichman SM. 2002. The response of plants to metal toxicity: a review focusing on copper, manganese and zinc. Melbourne: Australian Minerals Energy Environment Foundation. Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and dfferentiation in scots pine roots. Plant Physiol 127: 887 –898. Szôllôsi R, Kálmán E, Medvegy1 A, Petô1 A, Varga SI. 2011. Studies on oxidative stress caused by Cu and Zn excess in germinating seeds of Indian mustard Brassica juncea L. Acta Biol Szeg 55:175-178. Sembiring S. 2008. Sifat kimia dan fisik tanah pada areal bekas tambang bauksit di pulau Bintan, Riau. Info Hutan 5: 123-134 . Sabtanto JS, Suhandi. 2005. Pendataan sebaran unsur merkuri pada wilayah pertambangan gunung pani dan sekitarnya Kabupaten Pohuwato, Provinsi Gorontalo. Hasil Kegiatan Subdit Konservasi TA. Sandrint TR, Maier RM. 2012. Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation [abstrak]. Di dalam http:www.ncbi.nlm.nih.govpubmed12371483 di akses pada 26 September 2013. Shakoor MB, Ali S, Farid M, Farooq MA, Tauqeer HM, Iftikhar U, Hannan F, Bharwana SA. 2013. Heavy metal pollution, a global problem and its remediation by chemically enhanced phytoremediation: A Review. J Bio Env Sci 3:12-20. Shaleh H. 2013. Alih fungsi lahan makin mengkhawatirkan [terhubung berkala] di dalam_www.suaramerdeka.comv1index.phpreadnews201306131606 92Alih-Fungsi-Lahan-Makin-Mengkhawatirkan diakses pada [13 Juli 2013]. Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plat Physiol 17:35-52. Shen GM, Du QZ, Wang JX. 2012. Involvement of plasma membrane Ca 2+ H + antiporter in Cd 2+ tolerance. Rice Sci 19: 161−165 Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK. 2012. Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687 –1699. Singh S, Korripally P, Vancheeswaran R, Eapen S. 2011. Transgenic Nicotiana tabacum plants expressing a fungal copper transporter gene show enhanced acquisition of copper. Plant Cell Rep 30:1929 –1938. Sriprang R, Murooka Y. 2007. Accumulation and detoxification of metals by plants and microbes. Di dalam: Singh SN, Tripathi RD. Environmental Bioremediation Technologies. Springer: 1-28 Sudjana. 2005. Metoda Statistika. Bandung: Tarsito. Sunarminto BH. 2011. Genesis, karakteristik tanah dan kualitas lahan: peranannya dalam menumbuhkan tanaman [pidato pengukuhan guru besar]. Yogyakarta: Universitas Gadjah Mada. Suzuki N. 2005. Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotech 22: 19 –25. Tistama R, Widyastuti U, Sopandie D, Yokota A, Akashi K, Suharsono. 2012. Physiological and biochemical responses to aluminium stress in the root of a biodiesel plant Jatropha curcas L. Hayati 19:37-38. [UNEP] United Nations Environment Program. 2008. Draft final review of scientific information on cadmium. Chemical Branch Ver Nov 2008:1-184. Wann FB. 1930. Chlorosis Yellowing of Plants: Cause and Control. Utah: UAES Circulars Yau PY, Loh CF, Azmil IAR. 1991. Copper toxicity of clove Syzygium aromaticum L. Merr. and Perry seedlings. MARDI Res J 19: 49-53. Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F. 2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25: 365 –373 Yusnita. 2003. Kultur Jaringan: Cara Memperbanyak Tanaman secara Efisien. Jakarta: Agromedia Pustaka. Zhang J, Zhang X, Duan Y, Han Y. 2013. Construction of a phosphate transporter gene expression vector and its usage for tobacco transformation. Russ J Plant Physiol 60:290-294. Zou J, Yue J, Jiang W, Liu D. 2012. Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var Agrogarium L. Acta Biol Crac 54:129-141. Zulkarnain. 2009. Kultur Jaringan Tanaman. Jakarta: Bumi Aksara. LAMPIRAN I PengambilandanAnalisis Data A. RekapPengambilan Data Logam Konsentrasi µM Pertambahanpanjangakar ulangan Jumlah Rata-rata mm 1 2 3 4 5 Cu 6 7 10 4 20 47 9.4 50 8 5 7 9 6 35 7 100 6 5 7 5 6 29 5.8 150 2 5 7 14 2.8 200 3 1 4 4 12 2.4 Cd 17 7 6 9 6 45 9 50 5 3 4 4 6 22 4.4 100 5 4 3 4 4 20 4 200 4 4 4 2 3 17 3.4 300 2 9 6 1 18 3.6 Pb 10 11 15 8 14 58 11.6 5 8 17 9 9 8 51 10.2 20 16 3 3 2 24 4.8 50 1 6 4 2 4 17 3.4 100 3 5 2 2 3 15 3 Logam Konsentrasi µM Pertambahanjumlahakar ulangan Jumlah Rata-rata 1 2 3 4 5 Cu 1 3 9 8 4 25 5 50 3 4 5 4 7 23 4.6 100 8 4 6 4 22 4.4 150 1 4 6 7 18 3.6 200 2 1 2 3 2 10 2 Cd 16 7 5 9 5 42 8.4 50 5 5 3 6 4 23 4.6 100 7 12 4 8 8 39 7.8 200 7 13 10 8 3 41 8.2 300 8 2 3 8 8 29 5.8 Pb 8 7 10 7 5 37 7.4 5 7 3 5 3 6 24 4.8 20 5 2 3 1 4 15 3 50 3 1 6 4 4 18 3.6 100 1 2 3 1 3 10 2 62

B. Hasilanalisisanavasatujalandanuji BNT