Proof of the upper bound.

where τ r is the exit time for the process X from the box B r . Let {λ ω i r, i ∈ [1, B r ]} be the set of eigenvalues of −G ω r labelled in increasing order, and {ψ ω,r i , i ∈ [1, B r ]} the corresponding eigenfunctions with due normalization in L 2 B r , π ω .

3.2 Proof of the upper bound.

In this last part, we will complete the proof of Theorem 1.1 by giving the proof of the upper bound 1.13. Proof of Theorem 1.1. Assume that the origin belongs to C ξ . By lemma 3.1, we have P ω X t = 0 ≤ 2 t Z t t 2 P ω X s = 0ds = 2 t E ω   Z t t 2 1 {X s=0} ds   . The additive functional A ξ being a continuous increasing function of the time, so by operating a variable change by setting s = A ξ −1 u i.e. u = A ξ s, we get E ω   Z t t 2 1 {X s=0} ds   = E ω   Z t t 2 1 {X s=0} ϕX sds   = E ω    Z A ξ t A ξ t2 1 {X ξ u=0} du    , which is bounded by E ω   Z t A ξ t2 1 {X ξ u=0} du   , since A ξ t ≤ t. Therefore, for ε ∈ 0, 1 P ω X t = 0 ≤ 2 t E ω   Z t A ξ t2 1 {A ξ t2≥t ε } 1 {X ξ u=0} du   + 2 t E ω   Z t A ξ t2 1 {A ξ t2≤t ε } 1 {X ξ u=0} du   ≤ 2 t Z t t ε P ω X ξ u = 0du + 2 t Z t P ω A ξ t2 ≤ t ε du 2079 and using lemma 2.3, P ω X t = 0 ≤ c t Z t t ε u −d2 du + 2 t P ω A ξ t2 ≤ t ε t ≤ c t ε d 2 −ε+1 + 2P ω A ξ t2 ≤ t ε 3.7 It remains to estimate the second term in the right-hand side of the last inequality, i.e. P ω A ξ t2 ≤ t ε or more simply P ω A ξ t ≤ 2 ǫ t ε , but we can neglect the constant 2 ε in the calculus as one will see in 3.15. For each λ ≥ 0, Chebychev inequality gives P ω A ξ t ≤ t ε = P ω A ξ t ≤ t ε ; t τ r + P ω A ξ t ≤ t ε ; τ r ≤ t ≤ P ω e −λA ξ t ≥ e −λt ε ; t τ r + P ω τ r ≤ t ≤ e λt ε E ω h e −λA ξ t ; t τ r i + P ω τ r ≤ t. 3.8 From the Carne-Varopoulos inequality, it follows that P ω τ r ≤ t ≤ C t r d −1 e − r2 4t + e −ct , 3.9 where C and c are numerical constants, see Appendix C in [15]. With our choice of r such that t ∼ r 2 log r −b b 1, we get that P ω τ r ≤ t decays faster than any polynomial as t tends to + ∞. Thus Theorem 1.1 will be proved if we can check, for a particular choice of λ 0 that may depend on t, that lim sup t →+∞ log e λt ε E ω h e −λA ξ t ; t τ r i log t ≤ − d 2 . 3.10 That will be true if e λt ε E ω h e −λA ξ t ; t τ r i decays faster than any polynomial in t as t tends to + ∞. The Dirichlet form of −L ω r on L 2 B r , π ω endowed with the usual scalar product see Lemma 3.1, can be written as E ω,r f , f = ¬ −L ω r f , f ¶ ω = 1 2 X b ∈B r+1 d f b 2 ω b , 2080 where d f b = f y − f x and the sum ranges over b = x, y ∈ B ω r+1 . By the min-max Theorem see [12] and 3.4, we have λ ω 1 r = inf f 6≡0 E ω,r f , f + λ P x ∈C ξ r f 2 xπ ω x π ω f 2 . 3.11 where C ξ r is the largest connected component of C ξ ∩ B r , and the infimum is taken over functions with Dirichlet boundary conditions. Recall that λ ω 1 r is the first eigenvalue of −G ω r . To estimate the decay of the first term in the right-hand side of 3.8, we will also need to estimate the first eigenvalue λ ω 1 r. Recall that µ denotes an arbitrary positive constant. Lemma 3.4 Under assumption 1.7, for any d ≥ 2 and γ 0, we have Q − a.s. for r large enough, λ ω 1 r ≥ 8d −1 r − d γ +µ log n −5 , 3.12 for λ proportional to r − d γ +µ . Proof. For some arbitrary µ 0, let r be large enough so that 3.2 holds. Let h be a hole that intersects the box B r , and for notational ease we will use the same notation for h ∩ B r . Define ∂ h to be the outer boundary of h, i.e. the set of sites in C ξ r which are adjacent to some vertex in h. Let us associate to each hole h a fixed site h ∗ ∈ C ξ r situated at the outer boundary of h and for x ∈ h call κx, h ∗ a self-avoiding path included in h with end points x and h ∗ , and let |κx, h ∗ | denote the length of such a path. Now let f ∈ L 2 B r , π ω and let B ω h denote the set of the bonds of h. For each x ∈ h, write f x = X b ∈κx,h ∗ d f b + f h ∗ and, using Cauchy-Schwarz f 2 x ≤ 2|κx, h ∗ | X b ∈κx,h ∗ |d f b| 2 + 2 f 2 h ∗ . In every path κx, h ∗ , we see each bond only one time. Multiply the last inequality by π ω x 2081 and sum over x ∈ h to obtain X x ∈h f 2 xπ ω x ≤ 2 X x ∈h |κx, h ∗ | X b ∈κx,h ∗ |d f b| 2 π ω x + 2 X x ∈h f 2 h ∗ π ω x ≤ 4d max x ∈h |κx, h ∗ | max b ∈B ω h 1 ω b h X b ∈B ω h |d f b| 2 ω b + 2 X x ∈h f 2 h ∗ π ω x, 3.13 which, by virtue of lemma 2.1, 1.7, 3.2 and since π ω h ∗ ≥ ξ, is bounded by 4d r d γ +µ log r 5 X b ∈B ω h |d f b| 2 ω b + 4d ξ h f 2 h ∗ π ω h ∗ , Thus, X x ∈h f 2 xπ ω x ≤ 4d r d γ +µ log r 5 X b ∈B ω h |d f b| 2 ω b + 4d ξ h f 2 h ∗ π ω h ∗ . Let C c r ξ denote the complement of C ξ r in the box B r and sum over h to obtain X x ∈C c r ξ f 2 xπ ω x ≤ 8d r d γ +µ log r 5 E ω,r f , f + 8d 2 ξ h X x ∈C ξ r f 2 xπ ω x, where in the last term, we multiply by 2d since we may associate the same h ∗ to 2d different holes. Then X x ∈B r f 2 xπ ω x ≤ 1 + 8d 2 log r 5 2 ξ −1 X x ∈C ξ r f 2 xπ ω x + 8d r d γ +µ log r 5 E ω,r f , f . ≤ 8d 2 log r 5 ξ −1 X x ∈C ξ r f 2 xπ ω x + 8d r d γ +µ log r 5 E ω,r f , f . So, according to 3.11 and for λ = dξ −1 r − d γ +µ , we get λ ω 1 r ≥ 8d −1 r − d γ +µ log r −5 . 3.14 2082 Let us get back to the proof of the upper bound. Let λ = dξ −1 r − d γ +µ ; mr := 8d −1 r − d γ +µ log r −5 . For f ≡ 1, observe that R ω,r t f 0 = E ω h e −λA ξ t ; t τ r i = X i e −λ ω i rt ¬ 1, ψ ω,r i ¶ ψ ω,r i 0, and R ω,r t f 2 0π ω 0 ≤ X x ∈B r R ω,r t f 2 xπ ω x = X i e −2λ ω i rt ¬ 1, ψ ω,r i ¶ 2 ≤ e −2λ ω 1 rt X x 1 2 xπ ω x ≤ 2 d+2 d r d e −2λ ω 1 rt . Then, for large enough t and by 3.14, we have e λt ε E ω h e −λA ξ t ; t τ r i ≤ 2 d+2 d 1 2 e λt ε e −tλ ω 1 r r d 2 ≤ 2 d+2 d 1 2 r d 2 exp {λt ε − tmr} ≤ 2 d+2 d 1 2 r d 2 e − t 2 mr , 3.15 since ε 1. By our choice of t ∼ r 2 log r −b b 1, we deduce e λt ε E ω h e −λA ξ t ; t τ r i ≤ 2 d+2 d 1 2 r d 2 exp § −[16dlog r b+5 ] −1 r 2 r − d γ +µ ª ≪ t − d 2 if γ d 2 − µ , 3.16 which yields 3.10. In conclusion, as µ is arbitrary and according to 3.9–3.10, we obtain lim sup t →+∞ log P ω A ξ t ≤ t ε log t ≤ − d 2 for γ d 2 , 2083 and finally, by 3.7 lim ε→1 lim sup t →+∞ log P ω X t = 0 log t ≤ − d 2 for γ d 2 , which gives 1.13. We conclude that for any sufficiently small ξ, then Q ξ −a.s. 1.11 is true and since Q € ∪ ξ0 {0 ∈ C ξ ω} Š = 1, it remains true Q-a.s.

3.3 Proof of the discrete-time case.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52