Proof that Esn getdoc18fd. 410KB Jun 04 2011 12:04:08 AM

where c 1 is as in the statement of the separation lemma. We also let A n = {S[1, σ n ] ∩ b S 4n [0, b σ n ] = ;}, z = b S 4n b σ n , and D n = n −1 min {distSσ n , b S 4n [0, b σ n ], distz , S[0, σ n ]}. By the strong Markov property for random walk, b E ” P ¦ S[1, σ 4n ] ∩ b S 4n [0, b σ 4n ] = ; ©— ≥ cbE ” 1 {b S 4n [ b σ n , b σ 4n ] ⊂ W z }P A n ; D n ≥ c 1 — . By Lemma 2.4 and Corollary 3.7, b E ” 1 {b S 4n [ b σ n , b σ 4n ] ⊂ W z }P A n ; D n ≥ c 1 — ≥ cbE P A n ; D n ≥ c 1 . Finally, by the separation lemma, b E P A n ; D n ≥ c 1 ≥ cbE P A n , and therefore, b E ” P ¦ S[1, σ 4n ] ∩ b S 4n [0, b σ 4n ] = ; ©— ≥ cbE ” P ¦ S[1, σ n ] ∩ b S 4n [0, b σ n ] = ; ©— .

5.2 Proof that Esn

≍ Esm Esm, n Proposition 5.2. There exists C ∞ such that for all m and n with m ≤ n, Esn ≤ C Esm Esm, n. Proof. Let l = ⌊m4⌋ and fix η 1 = η 1 l and η 2 = η 2 m,n . For any path η in Ω n , P S[1, σ n ] ∩ η = ; ≤ P ¦ S[1, σ l ] ∩ η 1 η = ;; S[1, σ n ] ∩ η 2 η = ; © = X z ∈∂ B l P ¦ S[1, σ l ] ∩ η 1 η = ;; Sσ l = z © P z ¦ S[1, σ n ] ∩ η 2 η = ; © . However, η 2 η ⊂ Λ \ B m , and thus by the discrete Harnack principle, for any z, z ′ ∈ ∂ B l , P z ¦ S[1, σ n ] ∩ η 2 η = ; © ≍ P z ′ ¦ S[1, σ n ] ∩ η 2 η = ; © . Therefore, P S[1, σ n ] ∩ η = ; ≤ CP ¦ S[1, σ l ] ∩ η 1 η = ; © P ¦ S[1, σ n ] ∩ η 2 η = ; © . 1060 We now let η = b S n [0, b σ n ]. By Proposition 4.6, for any ω ∈ Ω l , λ ∈ e Ω m,n , P ¦ η 1 b S n [0, b σ n ] = ω; η 2 b S n [0, b σ n ] = λ © ≍ P ¦ η 1 b S n [0, b σ n ] = ω © P ¦ η 2 b S n [0, b σ n ] = λ © . Therefore, Esn = b E ” P ¦ S[1, σ n ] ∩ b S n [0, b σ n ] = ; ©— ≤ CbE ” P ¦ S[1, σ l ] ∩ η 1 b S n [0, b σ n ] = ; © P ¦ S[1, σ n ] ∩ η 2 b S n [0, b σ n ] = ; ©— ≤ CbE ” P ¦ S[1, σ l ] ∩ b S n [0, b σ l ] = ; ©— b E ” P ¦ S[1, σ n ] ∩ η 2 b S n [0, b σ n ] = ; ©— = C b E ” P ¦ S[1, σ l ] ∩ b S n [0, b σ l ] = ; ©— Esm, n. By corollary 4.5, since 4l ≤ n, b E ” P ¦ S[1, σ l ] ∩ b S n [0, b σ l ] = ; ©— ≍ bE ” P ¦ S[1, σ l ] ∩ b S[0, b σ l ] = ; ©— = e Esl. Finally, by Lemma 5.1, e Esl ≍ Esm, which finishes the proof of the proposition. Proposition 5.3. There exists c 0 such that for all m and n with m ≤ n2, Esn ≥ c Esm Esm, n. Proof. We will use the following abbreviations. Let l = ⌊m4⌋ and let η 1 = η 1 l b S n [0, b σ n ]; η 2 = η 2 m,n b S n [0, b σ n ]; η ∗ = η ∗ l,m,n b S n [0, b σ n ]. Then b S n [0, b σ n ] = η 1 ⊕ η ∗ ⊕ η 2 . We also decompose S[1, σ n ] into S 1 = S[1, σ 2l ] and S 2 = S[σ 2l + 1, σ n ]. Let c 1 be as in the statement of the separation lemma Theorem 4.7. Let W and W ∗ be the half- wedges W = {z : 1 − c 1 4 l ≤ |z| ≤ 1 + c 1 4 m, argz ≤ c 1 4 }; W ∗ = {z : 1 − c 1 4 l ≤ |z| ≤ 1 + c 1 4 m, argz ≤ c 1 2 }. and let A = B l ∪ W . Let K 1 be the set of η 1 such that η 1 ∩ ∂ B l ⊂ {z : argz ∈ − c 1 8 , c 1 8 }, and K 2 be the set of η 2 such that η 2 ∩ ∂ B m ⊂ {z : argz ∈ − c 1 8 , c 1 8 }. 1061 Then, Esn = b E ” P ¦ S[1, σ n ] ∩ b S n [0, b σ n ] = ; ©— = b E ” P ¦ S 1 ∩ η 1 ⊕ η ∗ = ;; S 2 ∩ η 1 ⊕ η ∗ ⊕ η 2 = ; ©— ≥ bE ” 1 {η 1 ∈K 1 } 1 {η 2 ∈K 2 } 1 {η ∗ ⊂W } P ¦ S 1 ∩ η 1 ∪ W ∗ = ;; S 2 ∩ η 2 ∪ A = ; ©— = b E ” 1 {η 1 ∈K 1 } P ¦ S 1 ∩ η 1 ∪ W ∗ = ; © × 1 {η 2 ∈K 2 } P ¦ S 2 ∩ η 2 ∪ A = ; S 1 ∩ η 1 ∪ W ∗ = ; © 1 {η ∗ ⊂W } — Therefore, Esn ≥ bE ” X η 1 Y η 2 1 {η ∗ ⊂W } — , where X η 1 = 1 {η 1 ∈K 1 } P ¦ S 1 ∩ η 1 ∪ W ∗ = ; © , and Y η 2 = 1 {η 2 ∈K 2 } inf z ∈∂ B 2l \W ∗ P z ¦ S[1, σ n ] ∩ η 2 ∪ A = ; © . By Lemma 2.4 and Corollary 3.8, for any ω 1 ∈ K 1 and ω 2 ∈ K 2 , b P ¦ η ∗ ⊂ W η 1 = ω 1 , η 2 = ω 2 © ≥ c, and therefore Esn ≥ cbE ” X η 1 Y η 2 — . However, by Proposition 4.6, η 1 and η 2 are independent up to constants, and therefore, Esn ≥ cbE ” X η 1 — b E ” Y η 2 — . To prove the Proposition, it therefore suffices to show that b E ” X η 1 — ≥ c Esm, 17 and b E ” Y η 2 — ≥ c Esm, n. 18 To prove 17, note that b E ” X η 1 — = b E ” 1 {η 1 ∈K 1 } P ¦ S 1 ∩ η 1 ∪ W ∗ = ; ©— ≥ cbE ” P ¦ S 1 ∩ η 1 ∪ W ∗ = ; ©— ≥ cbE ” P ¦ S[1, σ l ] ∩ η 1 = ;; distSσ l , η 1 ≥ cl; S[1, σ l ] ∩ W ∗ = ; ©— ≥ cbE ” P ¦ S[1, σ l ] ∩ η 1 = ; ©— , where the last inequality is justified by the separation lemma Theorem 4.7. However, by Corollary 4.5 and Lemma 5.1, b E ” P ¦ S[1, σ l ] ∩ η 1 = ; ©— ≍ bE ” P ¦ S[1, σ l ] ∩ b S[0, b σ l ] = ; ©— = e Esl ≍ Esm. 1062 We now prove 18. Since η 2 ⊂ Λ\B m , by the discrete Harnack inequality, for any z 1 , z 2 ∈ ∂ B 2l \W ∗ , P z 1 ¦ S[1, σ n ] ∩ η 2 ∪ A = ; © ≍ P z 2 ¦ S[1, σ n ] ∩ η 2 ∪ A = ; © . Therefore, fixing a z ∈ ∂ B 2l \ W ∗ , Y η 2 ≥ c1 {η 2 ∈K 2 } P z ¦ S[1, σ n ] ∩ η 2 ∪ A = ; © . By Lemma 3.1, P z ¦ S[1, σ n ] ∩ η 2 ∪ A = ; © = Gz; B n \ η 2 ∪ A Gz; B n X y ∈∂ B n P y ¦ ξ z ξ A ∧ ξ η 2 ξ z σ n © P z S σ n = y . For any y ∈ ∂ B n , P y ¦ ξ z ξ A ∧ ξ η 2 ξ z σ n © ≥ X w ∈∂ B m \W ∗ P w ¦ ξ z ξ A ∧ ξ η 2 ξ z σ n © P y ¦ ξ w ξ W ∗ ∧ ξ η 2 ξ z σ n © For any w ∈ ∂ B m \ W ∗ , P w n ξ B cl 4 z ξ A ∧ ξ η 2 ξ z σ n o ≥ c. Furthermore, by Lemma 3.4, for any u ∈ ∂ B cl 4 z, P u ¦ ξ z ξ A ∧ ξ η 2 ξ z σ n © P u ¦ ξ z ξ η 2 ξ z σ n © ≥ P u n ξ z ξ B cl 2 z ξ z ξ η 2 ∧ σ n o ≥ c. It also follows from 8 in Lemma 3.4 that for any two paths η 2 , e η 2 ∈ e Ω m,n and any u ∈ ∂ B cl 4 z, P u ¦ ξ z ξ η 2 ξ z σ n © ≍ P u ¦ ξ z ξ e η 2 ξ z σ n © , and therefore there exists f n, m such that for all η 2 ∈ e Ω m,n and u ∈ ∂ B cl 4 z, P u ¦ ξ z ξ η 2 |ξ z σ n © ≍ f n, m. Thus, P z ¦ S[1, σ n ] ∩ η 2 ∪ A = ; © ≥ c f n, m Gz; B n \ η 2 ∪ A Gz; B n × X y ∈∂ B n P y ¦ ξ m ξ η 2 ∧ ξ W ∗ |ξ z σ n © P z S σ n = y . Let r 1 = distz, η 2 ∪ ∂ B n and r 2 = distz, η 2 ∪ A ∪ ∂ B n . Then r 2 c 1 l c 1 r 1 . Therefore, Gz; B n \ η 2 ∪ A ≥ Gz; B r 2 z ≥ cGz; B l z 1063 and by Lemma 3.3 applied to the ball Bz, r 1 , Gz; B l z ≥ cGz; B r 1 z ≥ cGz; B n \ η 2 . Finally, by the reverse separation lemma Theorem 4.10, b E ” P y ¦ ξ m ξ η 2 ∧ ξ W ∗ |ξ z σ n ©— ≥ cbE ” P y ¦ ξ m ξ η 2 |ξ z σ n ©— , and thus b E ” Y η 2 — ≥ cbE ” 1 {η 2 ∈K 2 } P z ¦ S[1, σ n ] ∩ η 2 ∪ A = ; ©— ≥ cbE ” P z ¦ S[1, σ n ] ∩ η 2 ∪ A = ; ©— ≥ c Gz; B l Gz; B n f n, mb E    X y ∈∂ B n P y ¦ ξ m ξ η 2 ∧ ξ W ∗ |ξ z σ n © P z S σ n = y    ≥ cbE    Gz; B n \ η 2 Gz; B n f n, m X y ∈∂ B n P y ¦ ξ m ξ η 2 |ξ z σ n © P z S σ n = y    ≥ cbE    Gz; B n \ η 2 Gz; B n X y ∈∂ B n P y ¦ ξ z ξ η 2 |ξ z σ n © P z S σ n = y    . However, by applying Lemma 3.1 again, Gz; B n \ η 2 Gz; B n X y ∈∂ B n P y ¦ ξ z ξ η 2 |ξ z σ n © P z S σ n = y = P z ¦ S[1, σ n ] ∩ η 2 = ; © . and thus b E ” Y η 2 — ≥ c Esm, n.

5.3 Intersection exponents for SLE

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52