A moment bound getdoc8616. 297KB Jun 04 2011 12:04:37 AM

be the law L U on D c . To show that L ˜u t → ν it suffices to show that the limit does not depend on the choice of sequence t n . Suppose s n is another sequence increasing to infinity. If r n is a third increasing sequence containing all the elements of s n and t n then the above argument shows that L ˜u r n is convergent and hence the limits of L ˜u s n and L ˜u t n must coincide. Remark We do not yet know that the limit ν c is supported on D. We must rule out the possibility that the wavefronts get wider and wider and the limit ν c is concentrated on flat profiles. We do this by a moment estimate in the next section. Once this is known, standard Markovian arguments in section 3.3 will imply that ν = ν c | D , the restriction to D, is the law of a stochastic travelling wave.

3.2 A moment bound

We will require the following simple first moment bounds. Under hypothesis 2 we may choose K 1 , K 2 so that −K 1 1 − x ≤ f x ≤ K 2 x for all x ∈ [0, 1]. Lemma 11. Let u be a solution to 1 with initial condition u0 = φ ∈ D. i For any T 0 there exist CT ∞ so that Z R E ” ut, x − φx — d x ≤ CT ‚ 1 + Z R φ1 − φx d x Œ for t ≤ T . ii When the initial condition is Hx = I x 0 we have for x 0 E[ut, x] ≤ min{1, e K 2 t x −1 G t x}, E[1 − ut, −x] ≤ min{1, e K 1 t x −1 G t x}, and there exists CK 1 , K 2 , a ∞ so that E[ |Γut|] ≤ CK 1 , K 2 , a + 2K 1 2 1 + K 1 2 2 t for all t ≥ 0. Proof For part i we may, by translating the solution if necessary, assume that φ crosses 12 at the origin, that is φx ≤ 12 for x ≥ 0 and φx 12 for x 0. Taking expectations in 1 and applying f x ≤ K 2 x we find that E[ut, x] solves ∂ ∂ tE[ut, x] ≤ ∆E[ut, x] + K 2 E[ut, x]. This leads to E[ut, x] ≤ e K 2 t Z R G t x − yφ y d y 448 where G t x = 4πt −12 exp −x 2 4t. Hence for t ≤ T Z ∞ E[ut, x] d x ≤ e K 2 t Z ∞ Z R G t x − yφ y d y d x = e K 2 t Z −∞ Z ∞ + Z ∞ Z ∞ G t x − yφ y d x d y ≤ e K 2 t Z −∞ Z ∞ G t x − y d x d y + e K 2 t Z ∞ φ y Z R G t x − yd x d y ≤ CT ‚ 1 + Z ∞ φ y d y Œ . The process vt, x = 1 − ut, −x solves 1 with f u and gu replaced by − f 1 − v and −g1 − v. So the same argument estimates E[1 − ut, −x] and yields the bound with a possibly different constant depending on K 1 Z −∞ E[1 − ut, x] d x ≤ CT 1 + Z −∞ 1 − φ y d y . Note that Z R ut, x − φx d x ≤ Z ∞ ut, x + φx d x + Z −∞ 1 − ut, x + 1 − φx d x. Combining this with the bounds above and also Z ∞ φx d x + Z −∞ 1 − φx d x ≤ 2 Z R φ1 − φx d x which uses that φ crosses 12 at the origin completes the proof of part i. For part ii we have more explicit bounds. Use a Gaussian tail estimate to the bound for x E[ut, x] ≤ e K 2 t Z ∞ x G t y d y ≤ 2t x −1 e K 2 t G t x. In some regions the estimate E[ut, x] ≤ 1 is better. Since {Γut ≥ x} = {ut, x ≥ a} almost 449 surely for t 0, we have via Chebychev’s inequality E[Γut + ] = Z ∞ P[Γut ≥ x] d x = Z ∞ P[ut, x ≥ a] d x ≤ Z 2K 1 2 2 t d x + Z ∞ 2K 1 2 2 t a −1 E[ut, x] d x ≤ 2K 1 2 2 t + Z ∞ 2K 1 2 2 t 2ta x −1 e K 1 t x −1 G t x d x ≤ 2K 1 2 2 t + a −1 e K 2 t 4πt −12 Z ∞ 2K 1 2 2 t x2K 2 te −x 2 4t d x = 2K 1 2 2 t + aK 2 −1 4πt −12 . Similarly {Γut ≤ −x} = {1 − ut, −x ≥ 1 − a} and the same argument yields the bound on E[1 − ut, −x] and also E[Γut − ] ≤ 2K 1 2 1 t + aK 1 −1 4πt −12 . These estimates combine to control E[ |Γut|] as desired for t ≥ 1. A slight adjustment bounds the region t ≤ 1. We briefly sketch a simple idea from [5] for the deterministic equation u t = u x x + u1 − u started at H, which we will adapt for our stochastic equation. The associated centered wave satisfies ˜ u t = ˜ u x x + ˜ u x ˙ γ + ˜ u1 − ˜u where γ t is the associated wavefront marker. Integrating over −∞, 0] × [t , t], for some 0 t t yields the estimate ≥ Z −∞ [˜ ut, x − ˜ut , x] d x = Z t t ˜ u x s, 0 ds − 1 − aγ t − γ + Z t t Z −∞ ˜ u1 − ˜us, x d x ds. This allows one, for example, to control the size of the back tail R −∞ 1 − ˜ut, x d x. Integrating over [0, ∞ gives information on the front tail. The following lemma gives the analogous tricks for the stochastic equation. Lemma 12. Let u be the solution to 1 started from Hx = Ix 0. Let ˜ u be the solution centered 450 at height a ∈ 0, 1. Then for 0 t t, almost surely, Z ∞ ˜ ut, x − ˜ut , x d x = − Z t t ˜ u x s, 0 ds − aΓut − Γut + Z t t Z ∞ f ˜ us, x d x ds + Z t t Z ∞ g˜ us, x d x dW s , 12 Z −∞ ˜ ut, x − ˜ut , x d x = Z t t ˜ u x s, 0 ds − 1 − aΓut − Γut + Z t t Z −∞ f ˜ us, x d x ds + Z t t Z −∞ g˜ us, x d x dW s . 13 Proof Integrating 6 first over [t , t] and then over [0, U] we find Z U ˜ ut, x − ˜ut , x d x = Z U Z t t ˜ u x x s, x ds d x + Z U Z t t ˜ u x s, x ◦ dΓus d x + Z U Z t t f ˜ us, x ds d x + Z U Z t t g˜ us, x dW s d x = Z t t ˜ u x s, U − ˜u x s, 0 ds + Z t t ˜ us, U − a ◦ dΓus + Z t t Z U f ˜ us, x , d x ds + Z t t Z U g˜ us, x d x dW s . 14 The interchange of integrals uses Fubini’s theorem path by path for the first and third terms on the right hands side and a stochastic Fubini theorem for the second and fourth term for example the result on p176 of [9] applies directly for the fourth term and also the second term after localizing at the stopping times σ n = inf{t ≥ t : sup y ∈[0,U] |˜u x s, y| ≥ n}. To prove the lemma we shall let U → ∞ in each of the terms. Bound | f z| ≤ Cz1 − z for some C. Using the first moment bounds from Lemma 11 ii we see that Z t Z R E[ | f us, x|] d x ds ≤ C Z t Z R E[u1 − us, x] d x ds ≤ C Z t Z ∞ E[us, x] d x ds + C Z t Z −∞ E[1 − us, x] d x ds ∞. 451 This gives the domination that justifies R t t R U f ˜ us, x d x ds → R t t R ∞ f ˜ us, x d x ds almost surely. The first moments also imply Z t E    Z ∞ us, xd x 2    ds = Z t Z ∞ Z ∞ E[us, xus, y] d x d y ds ≤ Z t Z ∞ Z ∞ E[us, x] ∧ E[us, y] d x d y ds ∞. A similar argument bounds the integral over −∞, 0]. Bounding |gz| ≤ Cz1 − z we find that E[ R t R R |gus, x|d x 2 ds] is finite. This shows that the integral R t R ∞ g˜ us, x d x dW s makes sense and the Ito isometry allows one to check that the L 2 convergence Z t Z U g˜ us, x d x dW s → Z t Z ∞ g˜ us, x d x dW s . Theorem 3 iv shows that E[ R t t sup x |u x s, x| ds] ∞ and this gives the required domination to turn ˜ u x s, U → 0 into R t t ˜ u x s, U ds → 0. This leaves the second term in 14 and the lemma will follow once we have shown that R t t ˜ us, U ◦ dΓus → 0 almost surely as U → ∞. To see this expand the integral using the decomposition for dΓut = d mt, a in 5 to see that Z t t ˜ us, U ◦ dΓus = Z t t ˜ us, U ‚ m x x s, a m 2 x s, a − f am x s, a Œ ds −ga Z t t ˜ us, Um x s, a dW s − 1 2 ga Z t t ˜ us, U d ˜ u ·, Um x ·, a, W s 15 where we have converted from a Stratonovich to an Ito integral and we are writing [ · , ·] t for the cross quadratic variation. We claim that each of these terms converge to zero almost surely. Note that the strict negativity of the derivative u x t, x and the relations 7 imply that the path s → m x x s, am 2 x s, a − f am x s, a is almost surely continuous on [t , t]. So the first term on the right hand side of 15 converges almost surely to zero by dominated convergence using ˜ us, U → 0 as U → ∞. The second term in 15 also converges to zero by applying the same argument to the quadratic variation g 2 a R t t ˜ u 2 s, Um 2 x s, a ds. A short calculation leads to the explicit formula for the cross variation d ˜ u ·, Um x ·, a, W t = g˜ ut, Um x t, a d t − gam x x t, a˜ ut, U d t −ga˜ut, Um 2 x t, a d t − g ′ am x t, a˜ ut, U d t. Again, since also g˜ ut, U → 0 as U → ∞, a dominated convergence argument shows that the final term in 15 converges to zero as U → ∞. This completes the proof of the first equation in the lemma. The second is similar by integrating over [ −L, 0] and letting L → ∞. 452 Proposition 13. Suppose that f is of KPP, Nagumo or unstable type. In the latter two cases suppose that f a = 0 and ga 6= 0. Let u be the solution to 1 started from Hx = Ix 0 and let ν c be the limit law constructed from u in Proposition 10. Then ν c D = 1. In the KPP and Nagumo cases we have the increasing limits as t ↑ ∞ E –Z u1 − ut, x d x ™ ↑ Z D Z R φ1 − φx d x ν c dφ ∞. 16 In the unstable case Z D Z ∞ φa − φx d x ν c dφ ≤ sup t E –Z ∞ ˜ ua − ˜ut, x d x ™ ∞, Z D Z −∞ 1 − φφ − ax d x ν c dφ ≤ sup t E   Z −∞ 1 − ˜u˜u − at, x d x   ∞. 17 Proof We start with the case where f is of KPP type. In this case there is a constant C so that C f x ≥ x1 − x on [0, 1]. In a similar but easier way to Lemma 12, one may integrate 1 over s ∈ [t , t] and then x ∈ R to find Z R ut, x − ut , x d x = Z t t Z R f us, x d x ds + Z t t Z R gus, x d x dW s . Taking expectations and rearranging one finds t −1 Z t t Z R E[u1 − us, x] d x ds ≤ C t −1 Z t t Z R E[ f us, x] d x ds ≤ C t −1 Z R E[ut, x − ut , x] d x ≤ C t −1 Z ∞ E[ut, x + ut , x] d x +C t −1 Z −∞ E[1 − ut, x + 1 − ut , x] d x. Using the first moments from Lemma 11 ii on each of the four terms of the right hand side we find that lim sup t −1 Z t t Z R E[u1 − us, x] d x ds ∞. For example Z ∞ E[ut, x] d x ≤ Z ∞ min {1, e K 2 t x −1 G t x} d x ≤ Z p 2K 2 t 1 d x + Z ∞ p 2K 2 t e K 2 t x 2K 2 t 2 G t x d x = p 2K 2 t + 1 2K 2 t . 453 The other terms are similar. Writing z → mt, z for the inverse function to x → ut, x we have Z R u1 − ut, x d x = − Z 1 z1 − zm z t, z dz. The stochastic ordering of L ut and Lemma 5 iv show that t → E[m z t, z] is decreasing for t 0. Thus t → R R E[u1 − us, x]d x is increasing and we conclude that sup t ≥0 Z R E[u1 − ut, x] d x ∞. For fixed N 0 the functionals φ → R N −N φ1 − φx d x are bounded and continuous on D c . So by the convergence of L ˜ut to ν c in M D c we see that Z N −N E[˜ u1 − ˜ut, x] d x → Z D c Z N −N φ1 − φx d x ν c dφ. The last two displayed equations imply that Z D c Z R φ1 − φx d x ν c dφ ≤ lim t ↑∞ Z E[u1 − ut, x] d x ∞. 18 This in turn implies that ν c only charges D. For 0 ≤ N ≤ M the function I N , t = Z M N E[˜ ut, x] d x is increasing in M and also in t since L ˜ut are stochastically increasing. We may therefore interchange the t and M limits to see that lim t ↑∞ Z ∞ N E[˜ ut, x] d x = lim t ↑∞ lim M ↑∞ Z M N E[˜ ut, x] d x = lim M ↑∞ lim t ↑∞ Z M N E[˜ ut, x] d x = lim M ↑∞ Z D Z M N φx d x ν c dφ = Z D Z ∞ N φx d x ν c dφ. Similarly, as t ↑ ∞ Z −N −∞ E[1 − ˜ut, x] d x ↑ Z D Z −N −∞ 1 − φ d x ν c dφ. 454 Since R D R R φ1 − φx d x ν c dφ ∞ we may, for any ε 0, choose N ε so that sup t Z ∞ N ε E[˜ ut, x] d x ≤ Z D Z ∞ N ε φ d x ν c dφ ≤ ε, sup t Z −N ε −∞ E[1 − ˜ut, x] d x ≤ Z D Z −N ε −∞ 1 − φ d x ν c dφ ≤ ε. 19 This control on the tails allows us to improve on 18 to the desired result 16. Now we consider the case where f is of Nagumo type, and this is the only place we exploit the bi-stability of f that is f ′ 0, f ′ 1 0. We may fix a smooth strictly concave h : [0, 1] → R satisfying h0 = h1 = 0 and h ′ a = 0, h ′ 0 0, h ′ 1 0. A running example to keep in mind is the case f = x1 − xx − 1 2 and h = x1 − x. Then dhu = h ′ uu x x d t + h ′ f + 1 2 h ′′ g 2 u d t + h ′ gu dW t . 20 The properties of h and the fact that f is of Nagumo type together imply that h ′ f ≤ 0 on [0, 1] and h ′ f only vanishes at 0, a, 1. Since ga 0 we have h ′ f + 1 2 h ′′ g 2 0 on 0, 1. The derivatives at x = 0, 1 are non-zero and this implies that here is an ε 0 so that h ′ f + h ′′ g 2 ≤ −εh. The aim is to obtain a differential inequality of the form d m ≤ C − εm for mt = R R E[hut, x] d x. Integrate 20 over [t , t] and then [ −N, N] to obtain Z N −N E[hut, x] d x − Z N −N E[hut , x] d x = Z t t Z N −N E[h ′ us, x u x x s, x] d x ds + Z t t Z N −N E[h ′ f + 1 2 h ′′ g 2 us, x] d x ds = Z t t E[h ′ us, N u x s, N ] − E[h ′ us, −N u x s, −N] ds − Z t t Z N −N E[h ′′ us, x u 2 x s, x] d x ds + Z t t Z N −N E[h ′ f + 1 2 h ′′ g 2 us, x] d x ds where we have integrated by parts in the last equality. Letting N → ∞ is justified and is similar but simpler than Lemma 12 and we find Z R E[hut, x] d x − Z R E[hut , x] d x ≤ kh ′′ k ∞ Z t t Z R E[u 2 x s, x] d x ds − ε Z t t Z R E[hus, x] d x ds ≤ kh ′′ k ∞ Z t t E[sup z |u x s, z|] ds − ε Z t t Z R E[hus, x] d x ds where in the last step we use that Z R u 2 x s, xd x ≤ sup z |u x s, z| Z R |u x s, x| d x = sup z |u x s, z|. 455 The stochastic monotonicity of s → L ˜us and Lemma 5 iv imply that the supremum sup z |u x s, x| is stochastically decreasing. Since E[sup z |u x t , z |] is finite by Theorem 3 iv we have the desired differential inequality for mt = R R E[hut, x] d x. This implies that m stays bounded and since Chz ≥ z1 − z for some C we find sup t ≥t Z R E[u1 − ut, x] d x ≤ C sup t ≥t Z R E[hus, x] d x ∞. As in the previous KPP case this implies 16 and that ν c only charges D. Now we consider the case where f is of unstable type. Rearranging the conclusion of Lemma 12 we see, after taking expectations, that t −1 Z t t Z ∞ E[ f ˜ us, x] d x ds ≤ t −1 Z ∞ E[˜ ut, x + ˜ ut , x] d x +t −1 Z t t E[ |˜u x s, 0|] ds +at −1 E |Γut| + |Γut | . 21 We claim that the limsup as t → ∞ is finite for all three terms on the right hand side. The first term can bounded using Z ∞ ˜ us, x d x ≤ 1 − a −1 Z R ˜ u1 − ˜us, x d x = 1 − a −1 Z R u1 − us, x d x ≤ 1 − a −1 Z ∞ us, x d x + 1 − a −1 Z −∞ 1 − us, x d x and then controlled by first moments as in the KPP case. For the second term the claim follows from the fact that s → E[|˜u x s, 0|] is decreasing and finite from Theorem 3 iv. For the third term the claim follows from Lemma 11. We conclude that the limsup of the left hand side of 21 is finite. Applying a similar argument to the second equation of Lemma 12 we have lim sup t →∞ t −1 Z t t Z ∞ E[ f ˜ us, x] d x ds ∞, lim sup t →∞ t −1 Z t t Z −∞ E[ f ˜ us, x] d x ds ∞. Note that f is of a single sign on each of the intervals [0, a] and [a, 1]. Indeed there exists C so that C | f x| ≥ xa − x for x ∈ [0, a] and C| f x| ≥ 1 − xx − a for x ∈ [a, 1]. 456 Therefore we have lim sup t →∞ t −1 Z t t Z ∞ E[˜ ua − ˜us, x] d x ds ∞, lim sup t →∞ t −1 Z t t Z −∞ E[1 − ˜u˜u − as, x] d x ds ∞. We have Z ∞ ˜ ua − ˜ut, x d x = − Z a za − zm z t, z dz Z −∞ 1 − ˜u˜u − at, x d x = − Z 1 a 1 − zz − am z t, z dz. For fixed N 0 the functionals φ → R N a − φφ d x and φ → R −N 1 − φφ − a d x are bounded and continuous on D c . The same reasoning as in the previous cases yields 17. The construction of ν c in Lemma 10 as the law of a variable U shows that φx ≥ a for x 0 and φx ≤ a for x 0, for ν c almost all φ. This and 17 imply that ν c charges only D or the single point φ ≡ a. The argument that there is no mass on the point φ ≡ a is a little fiddly, and we start with a brief sketch. We argue that if φ ≡ a with ν c positive mass then there are arbitrarily wide patches in ˜ ut, for large t, that are flattish, that is lie close to the value a. But the height of this large flatish patch will evolve roughly like the SDE d Y = f Y d t + gY dW with Y = a. Since ga 6= 0 the sde will move away from the value a with non-zero probability and this would lead to an arbitrary large value of E[ R R |1 − ˜u| |˜u − a| ˜u d x] for all large times which contradicts 17. To implement this argument we will use the following estimate. Lemma 14. Let u be a solution to 1 driven by a Brownian motion W . Let Y be the solution to the SDE d Y = f Y d t + gY dW with Y = a. Then there exists a constant c T so that for all η ∈ 0, 1 Z R e −η|x| E[ |ut, x − Y t | 2 ] d x ≤ c T Z R e −η|x| E[ |u0, x − a| 2 ] d x for t ∈ [0, T ]. Note that the constant c does not depend on η ∈ 0, 1. Considered as a constant function in x, the process Y t is a solution to 1. This lemma therefore follows by a standard Gronwall argument in order to estimate the L 2 difference between two solutions for an equation with Lipshitz coefficients. The use of weighted norms for equations on the whole space, that is the norm R R e −η|x| E[ |ut, x − vt, x | 2 ] d x, is also standard - see, for example, the analogous estimate in the proof of Shiga [11] Theorem 2.2 for the harder case of an equation driven by space-time white noise. Suppose aiming for a contradiction that ν c φ ≡ a = δ 1 0. By the convergence L ˜ut → ν c we have, for any η 0, P –Z R |˜ut, x − a| 2 e −η|x| d x ≤ 1 ™ ≥ E –‚ 1 − Z R |˜ut, x − a| 2 e −η|x| d x Œ + ™ → Z D c ‚ 1 − Z R |φx − a| 2 e −η|x| d x Œ + ν c dφ ≥ δ 1 . 457 Suppose the solution u is defined on a filtered space Ω, F , F t , P and with respect to an F t Brownian motion W . Then for t ≥ T η, we may choose sets Ω t ∈ F t satisfying P[Ω t ] = δ 1 2 and Z R |ut, x − a| 2 e −η|x| d x ≤ 1 on Ω t . Fix t ≥ T η. Let Y s : s ∈ [t, t + 1] solve the SDE dY = f Y d t + gY dW with initial condition Y t = a. Since ga 6= 0 there must exist t ∗ ∈ 0, 1, δ 2 , δ 3 0 satisfying 4δ 2 a ∧ 1 − a such that P[ |Y t ∗ − a| ∈ δ 2 , 2 δ 2 ] δ 3 . The requirement that 4 δ 2 a ∧ 1 − a ensures that when |Y t ∗ − a| ∈ δ 2 , 2 δ 2 then Y t ∗ ≥ a 2 and 1 − Y t ∗ ≥ 1 −a 2 . Then Z R E[u |1 − u| |u − a|t + t ∗ , x] d x ≥ Z R e −η|x| E[u |1 − u| |u − a|t + t ∗ , xIΩ t ] d x ≥ Z R e −η|x| E[Y t+t ∗ |1 − Y t+t ∗ | |Y t+t ∗ − a|IΩ t ] d x −L Z R e −η|x| E[ |ut + t∗, x − Y t+t ∗ |IΩ t ] d x =: I − I I 22 where L is the Lipschitz constant of z |1 − z||a − z| on [0, 1]. We now estimate the terms I and I I. Firstly, I = 2 η E Y t+t ∗ |1 − Y t+t ∗ | |Y t+t ∗ − a|IΩ t = 2 η P[Ω t ]E ” Y t ∗ |1 − Y t ∗ | |Y t ∗ − a| Y = a — by the Markov property ≥ a1 − aδ 1 4 η E ” |Y t ∗ − a| Y = a — ≥ a1 − aδ 1 δ 2 δ 3 4 η . 458 Secondly, using Cauchy-Schwarz, I I = L E   I Ω t E   Z R e −η|x| |ut + t ∗ , x − Y t+t ∗ | d x F t     ≤ L r 2 η E    I Ω t E   Z R e −η|x| |ut + t ∗ , x − Y t+t ∗ | 2 d x F t   1 2    ≤ L c 1 r 2 η E    I Ω t Z R e −η|x| |ut, x − a| 2 d x 1 2    by Lemma 14 ≤ L c 1 r 2 η E[I Ω t ] by the choice of Ω t = L c 1 r 2 η δ 1 2 . Thus, substituting these estimates into 22, we find for t ≥ T η Z R E ˜ u |1 − ˜u| |˜u − a|t + t ∗ , x d x = Z R E u|1 − u| |u − a|t + t ∗ , x d x ≥ a1 − aδ 1 δ 2 δ 3 4 η − L c 1 r 2 η δ 1 2 . By taking η small this bound can be made arbitrarily large, which contradicts 17.

3.3 Proof of Theorem 1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52