Proof of Proposition 1.3 getdocc39b. 316KB Jun 04 2011 12:04:56 AM

2.3 Proof of Proposition 1.3

Before we prove anything we would like to recall the fact that we can write see Remark ii after Theorem 1.2 f + J 1 , J 2 , h 1 = ψJ 2 , τ + J 1 , J 2 , h 1 J 1 , J 2 0, h 1 ∈ R, where τ + J 1 , J 2 , h 1 = t + J 1 , h 1 + |J 1 − J 2 | and the map t 7→ ψJ 2 , t is continuous see Figure 1.2 for a picture. In the rest of the proof, we will use this fact without further notification. For example, the above immediately gives that h 1 7→ f + J 1 , J 2 , h 1 is continuous at a point h 1 ∈ R if h 1 7→ t + J 1 , h 1 is so. Proof of Proposition 1.3. We will only prove part a and c. The proof of part b follows the same type of argument as the proof of part a. To prove part a, we start to argue that for given J 1 0 the map h 1 7→ t + J 1 , h 1 is right-continuous at every point h 1 ∈ R. To see that, take a sequence of reals {h n } such that h n ↓ h 1 as n → ∞ and note that since the map h 1 7→ t + J 1 , h 1 is increasing, the sequence {t + J 1 , h n } converges to a limit ˜t with ˜t ≥ t + J 1 , h 1 . Moreover, by taking the limit in the fixed point equation we see that ˜t = h 1 + dφ J 1 ˜t 2.8 and since t + J 1 , h 1 is the largest number satisfying 2.8 we get ˜t = t + J 1 , h 1 . Next, assume h 1 6= −h ∗ J 1 and h n ↑ h 1 as n → ∞. As before, the limit of {t + J 1 , h n } exists, denote it by T . The number T will again satisfy 2.8. By considering the different cases described in Figure 2.3, we easily conclude that T = t + J 1 , h 1 . Hence, the function h 1 7→ t + J 1 , h 1 is continuous for all h 1 6= −h ∗ J and so we get that h 1 7→ f + J 1 , J 2 , h 1 is also continuous for all h 1 6= −h ∗ J 1 . Now assume h 1 = −h ∗ J 1 . By considering sequences h n ↓ −h ∗ J 1 and h n ↑ −h ∗ J 1 we can similarly as above see that τ + J 1 , J 2 , −h ∗ J 1 + : = lim h↓−h ∗ J 1 τ + J 1 , J 2 , h = t + J 1 , −h ∗ J 1 + |J 1 − J 2 | τ + J 1 , J 2 , −h ∗ J 1 − : = lim h↑−h ∗ J 1 τ + J 1 , J 2 , h = t − J 1 , −h ∗ J 1 + |J 1 − J 2 | and so τ + J 1 , J 2 , −h ∗ J 1 + = τ + J 1 , J 2 , −h ∗ J 1 − ⇐⇒ h ∗ J 1 = 0. Since h ∗ J 1 = 0 if and only if 0 J 1 ≤ J c the continuity of h 1 7→ f + J 1 , J 2 , h 1 at −h ∗ J 1 follows at once in that case. If J 1 = J 2 , then τ + J 1 , J 2 , −h ∗ J 1 + = t + J 2 , −h ∗ J 2 τ + J 1 , J 2 , −h ∗ J 1 − = t − J 2 , −h ∗ J 2 and since ψJ 2 , t + J 2 , −h ∗ J 2 = ψJ 2 , t − J 2 , −h ∗ J 2 , the continuity is clear also in that case. If J 1 J c and 0 J 2 ≤ J c , then τ + J 1 , J 2 , −h ∗ J 1 + 6= τ + J 1 , J 2 , −h ∗ J 1 − 1815 t |h 1 | h ∗ J 1 , h ∗ J 1 t h 1 = h ∗ J 1 t |h 1 | h ∗ J 1 -30 -20 -10 10 20 30 -30 -20 -10 10 20 30 -30 -20 -10 10 20 30 -20 20 -20 20 -20 20 Figure 2.3: A picture of the different cases in the fixed point equation that can occur when h 1 6= −h ∗ J 1 . Here, d = 4 and J 1 = 3. and the map t 7→ ψJ 2 , t becomes strictly increasing, hence h 1 7→ f + J 1 , J 2 , h 1 is discontinuous at −h ∗ J 1 . For the case when J 1 J c , J 2 J c , J 1 6= J 2 just note that h 1 7→ f + J 1 , J 2 , h 1 is continuous at −h ∗ J 1 if and only if a and b defined in the statement of the proposition are in the flat region in the upper graph of Figure 1.2. To prove part c we take a closer look at the map J 2 , t 7→ ψJ 2 , t. By definition, this map is ψJ 2 , t = −h ∗ J 2 if t − J 2 , −h ∗ J 2 ≤ t t ∗ J 2 t − d φ J 2 t if t ≥ t ∗ J 2 or t t − J 2 , −h ∗ J 2 . From the continuity of t 7→ ψJ 2 , t for fixed J 2 and the facts that J 2 7→ t ∗ J 2 , J 2 7→ t − J 2 , −h ∗ J 2 , J 2 7→ −h ∗ J 2 and J 2 , t 7→ t − d φ J 2 t are all continuous, we get that ψ is jointly continuous and so the result follows. ƒ 1816

2.4 Proof of Proposition 1.4

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52