Local time of a strongly correlated walk in the domain of attraction of a frac- The local time of many independent random walks

2.3 Local time of a strongly correlated walk in the domain of attraction of a frac-

tional Brownian motion Let S = S n n∈ N be a Z -random walk such that    S = 0, S n =   n X k=1 X k   , n ≥ 1, where X k k≥1 is a stationary Gaussian sequence with mean 0 and correlations ri − j = E X i X j satisfying as n → ∞, n X i=1 n X j=1 ri − j ∼ n 2H ln with 0 H 1 and l is a slowly varying function at ∞. Assumption RW1 is satisfied with a n = n H ln 1 2 and Y the standard fractional Brownian motion B H t t≥0 of index 0 H 1, i.e. the centered Gaussian process such that B H 0 = 0 and E |B H t 2 − B H t 1 | 2 = |t 2 − t 1 | 2H . The local time N H n, x with n ∈ N and x ∈ Z is defined as the number of visits of S n n∈ N at point x up to time n. Its rescaled local time L n,H t, x t≥0,x∈ R is defined as L n,H t, x = n −1−H ln 1 2 N [nt], [n H ln 1 2 x]. We denote by L H t, x t≥0,x∈ R the jointly continuous version of the local time of the process B H . We are interested in the convergence in L p , p ≥ 1 of the rescaled local time L n,H to L H . By applying the general criterion of Section 2.1, we get the following result. Proposition 2.3. For every m ≥ 1, for every θ 1 ∈ R , . . . , θ m ∈ R , for every t 1 , . . . , t m such that t 1 . . . t m , the following convergence holds in L p , p ∈ [1, 2]: m X i=1 θ i L n,H t i , . L =⇒ m X i=1 θ i L H t i , . as n → ∞. Proof: Conditions RW2.a − b directly follow from Lemma 4.4 and Lemma 4.6 of Wang [26]. ƒ

2.4 The local time of many independent random walks

We consider independent and identically distributed Z −random walks S i = S i n n∈ N , i ≥ 1, verifying assumption RW. The local time of the i-th random walk is denoted by N i n, x n∈ N ;x∈ Z and the rescaled one by L i n t, x t≥0;x∈ R . The independent limit processes of the correctly renor- malized random walks S i have local time denoted by L i t, x t≥0;x∈ R . We prove that 1501 Proposition 2.4. Let c n → ∞ as n → ∞. Suppose that the random walks S i , i ≥ 1 are i.i.d. and satisfy assumption RW for some p ≥ 1. Suppose furthermore that for any fixed t ≥ 0, E   ‚Z R L 1 t, x p d x Œ 1 p   ∞. 4 Then, for every m ≥ 1, for every θ 1 ∈ R , . . . , θ m ∈ R , for every t 1 , . . . , t m such that 0 t 1 . . . t m , the following convergence holds in L p : 1 c n m X j=1 θ j c n X i=1 L i n t j , . L =⇒ m X j=1 θ j E L 1 t j , . as n → ∞. 5 Proof: From Proposition 2.1 and Skorohod’s representation theorem, there exists a probability space on which are defined independent copies of the processes L i n and L i denoted by ˜L i n and ˜L i such that for every i ≥ 1, the sequence P m j=1 θ j ˜L i n t j , . converges almost surely in L p to P m j=1 θ j ˜L i t j , . as n tends to infinity. So it is enough to prove the result for these later sequences. Step 1: First, from triangular inequality, we have 1 c n m X j=1 θ j c n X i=1 ”˜L i n t j , . − ˜L i t j , . — L p R ≤ 1 c n c n X i=1 || m X j=1 θ j €˜L i n t j , . − ˜L i t j , . Š || L p R . and we prove that this quantity converges to zero as n → ∞. To see this, let X i n = || m X j=1 θ j €˜L i n t j , . − ˜L i t j , . Š || L p R . The triangular array of random variables {X i n , n ≥ 1, i ∈ {1, . . . , c n }} is such that: - on each row fixed n, the random variables X i n , i ∈ {1, . . . , c n } are i.i.d.. - on each column fixed i, X i n n≥1 weakly converges to zero as n → ∞. Under these general assumptions, the following weak law of large numbers holds 1 c n c n X i=1 X i n L =⇒ 0, 6 implying the required result for the local time. We finally give some indications for the proof of the weak law of large numbers. Denote by A n the random variable in the left hand side of 6. Using the independence of the X i n ’s, its characteristic function is given by E expiuA n = € E ” expiuc −1 n X 1 n —Š c n 1502 and hence E expiuA n − 1 ≤ E ” min € c n | expiuc −1 n X 1 n − 1|, 2 Š— ≤ E ” min € |u|X 1 n , 2 Š— . The function x → min |u|x, 2 is continuous and bounded on R + . Then, since the sequence X 1 n n≥1 weakly converges to 0, we deduce that E expiuA n n≥1 converges to 1 as n → ∞ and this proves the weak law of large numbers. Step 2: From Assumption 4 and the strong law of large numbers in the Banach space L p R see [20] for instance, the sequence 1 c n m X j=1 θ j c n X i=1 ˜L i t j , . converges almost surely in L p to the function m X j=1 θ j E ˜L 1 t j , .. Conclusion: Combining steps 1 and 2 gives 5. ƒ Examples: The above proposition directly applies in the case of random walks with i.i.d. increments in the domain of attraction of a stable Lévy motion see Section 2.2 or of a strongly correlated Gaussian random walk in the domain of attraction of a fractional Brownian motion see Section 2.3. In both cases, equation 4 is satisfied for every p ∈ [1, 2]: Lemma 2.1 of [12] states that the local time of a stable Lévy motion is L p −integrable and Theorem 3.1 of [9] gives a similar result for the fractional Brownian motion. 3 Convergence of the random measures associated with the random scenery Let ξ = {ξ x , x ∈ Z } be a family of real random variables. In the sequel, we consider µ h = µ h ξ the random signed measure on R absolutely continuous with respect to Lebesgue measure with random density d µ h d x x = γ h h −1 X k∈ Z ξ k 1 [hk,hk+1 x, 7 where γ h 0 is a normalisation constant. For a locally integrable function f ∈ L 1 l oc , we want to define µ h [ f ] = γ h X k∈ Z ξ k h −1 Z hk+1 hk f xd x. 8 Denote by F µ h the set of functions f ∈ L 1 l oc such that this series is convergent in a sense that will be precised later according to the considered cases: either almost-sure semi-convergence or convergence in L 2 Ω. Clearly, any integrable function with bounded support belongs to the set 1503 F µ h . The following scaling relation is worth noting: µ h [ f c.] = γ h c γ ch µ ch [ f .], 9 whenever these quantities are well-defined. We introduce the cumulative scenery w x x∈ Z w x =    P x−1 i=0 ξ i if x P −1 i=x ξ k if x if x = 0 , x ∈ Z , and we extend it to a continuous process by the linear interpolation w x = w [x] + x − [x]w [x]+1 − w [x] . Note that µ h [1 [x 1 ,x 2 ] ] = γ h w h −1 x 2 − w h −1 x 1 = W h x 2 − W h x 1 , x 1 , x 2 ∈ R , x 1 ≤ x 2 . 10 with W h the rescaled cumulative scenery W h x = γ h w h −1 x .

3.1 Independent and identically distributed scenery

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52