Strongly dissipative case getdoc3188. 282KB Jun 04 2011 12:04:13 AM

Moreover, denoting ux 1 and ux 2 by u 1 and u 2 respectively, an argument similar to the one leading to 19 yields the estimate ψT ≤ E|x 1 − x 2 | 2 + 2η − α Z T ψt d t + 146 Z T ht ψt d t, where ψt := E sup s≤t |u 1 s − u 2 s| 2 . By Gronwall’s inequality we get ku 1 − u 2 k 2 2, α ≤ e 2 η−α+146|h| L1 |x 1 − x 2 | 2 L 2 , which proves that x 7→ ux is Lipschitz from L 2 to H 2, α T , hence also from L 2 to H 2 T by the equivalence of the norms k · k 2, α . Remark 13. As briefly mentioned in the introduction, one may prove under suitable assumptions global well posedness for stochastic evolution equations obtained by adding to the right-hand side of 17 a term of the type Bt, ut dW t, where W is a cylindrical Wiener process on L 2 D, and B satisfies a Lipschitz condition analogous to the one satisfied by G in Theorem 12. An inspection of our proof reveals that all is needed is a maximal estimate of the type 5 for stochastic convolutions driven by Wiener processes. To this purpose one may use, for instance, [10, Thm. 2.13]. Let us also remark that many sophisticated estimates exist for stochastic convolutions driven by Wiener processes. Full details on well posedness as well as existence and uniqueness of invariant measures for stochastic evolution equations of quasidissipative type driven by both multiplicative Poisson and Wiener noise will be given in a forthcoming article. 3 Invariant measures and Ergodicity Throughout this section we shall additionally assume that G : Z × H → H is a deterministic Z ⊗ B H-measurable function satisfying the Lipschitz assumption Z Z |Gz, u − Gz, v| 2 mdz ≤ K|u − v| 2 , for some K 0. The latter assumption guarantees that the evolution equation is well-posed by The- orem 12. Moreover, it is easy to see that the solution is Markovian, hence it generates a semigroup via the usual formula P t ϕx := Eϕut, x, ϕ ∈ B b H. Here B b H stands for the set of bounded Borel functions from H to R.

3.1 Strongly dissipative case

Throughout this subsection we shall assume that there exist β and ω 1 K such that 2〈A β u − A β v, u − v〉 + 2〈 f λ u − f λ v, u − v〉 − 2η|u − v| 2 ≥ ω 1 |u − v| 2 20 for all β ∈]0, β [, λ ∈]0, β [, and for all u, v ∈ H. This is enough to guarantee existence and unique- ness of an ergodic invariant measure for P t , with exponentially fast convergence to equilibrium. 1546 Proposition 14. Under hypothesis 20 there exists a unique invariant measure ν for P t , which satisfies the following properties: i Z |x| 2 νd x ∞; ii let ϕ ∈ ˙ C 0,1 H, R and λ ∈ M 1 H. Then one has Z H P t ϕx λ d x − Z H ϕ νd y ≤ [ϕ] 1 e −ω 1 t Z H×H |x − y| λ d x νd y Following a classical procedure see e.g. [13, 31, 32], let us consider the stochastic equation dut + Aut + f u d t = ηut d t + Z Z Gz, ut− d ¯ µ 1 d t, dz, us = x, 21 where s ∈] − ∞, t[, ¯ µ 1 = µ 1 − Leb ⊗ m, and µ 1 t, B = µt, B, t ≥ 0, µ −t, B, t 0, for all B ∈ Z , with µ an independent copy of µ. The filtration ¯ F t t∈R on which µ 1 is considered can be constructed as follows: ¯ F t := \ s t ¯ F s , ¯ F s := σ {µ 1 [r 1 , r 2 ], B : −∞ r 1 ≤ r 2 ≤ s, B ∈ Z }, N , where N stands for the null sets of the probability space Ω, F , P. We shall denote the value at time t ≥ s of the solution of 21 by ut; s, x. For the proof of Proposition 14 we need the following lemma. Lemma 15. There exists a random variable ζ ∈ L 2 such that u0; s, x → ζ in L 2 as s → −∞ for all x ∈ L 2 . Moreover, there exists a constant N such that E |u0; s, x − x| 2 ≤ e −2ω 1 |s| N 1 + E|x| 2 22 for all s 0. Proof. Let u be the generalized mild solution of 21. Define Γt, z := Gz, ut−, and let Γ n be an approximation of Γ, as in the proof of Proposition 10. Let us denote the strong solution of the equation dut + A β ut + f λ ut d t = ηut d t + Z Z Γ n t, z d ¯ µ 1 d t, dz, us = x, by u n λβ . By Itô’s lemma we can write |u n λβ t| 2 + 2 Z t s 〈A β u n λβ r, u n λβ r〉 + 〈 f λ u n λβ r, u n λβ r〉 − η|u n λβ r| 2 d r = |x| 2 + 2 Z t s Z Z 〈Γ n r, z, u n λβ r〉 ¯ µ 1 d r, dz + Z t s Z Z |Γ n r, z| 2 µ 1 d r, dz. 23 1547 Note that we have, by Young’s inequality, for any ǫ 0, −〈 f λ u, u〉 = −〈 f λ u − f 0, u − 0〉 − 〈 f λ 0, u〉 ≤ −〈 f λ u − f 0, u − 0〉 + ǫ 2 |u| 2 + 1 2 ǫ | f λ 0| 2 . Since f λ 0 → f 0 as λ → 0, there exists δ 0, λ 0 such that | f λ 0| 2 ≤ | f 0| 2 + δ2 ∀λ λ . By 20 we thus have, for β β , λ λ ∧ β , − 2〈A β u n λβ , u n λβ 〉 − 2〈 f λ u n λβ , u n λβ 〉 + 2η|u n λβ | 2 ≤ −ω 1 |u n λβ | 2 + ǫ|u n λβ | 2 + ǫ −1 | f 0| 2 + δ. Taking expectations in 23, applying the above inequality, and passing to the limit as β → 0, λ → 0, and n → ∞, yields E |ut| 2 ≤ E|x| 2 − ω 1 − ǫ Z t s E |ur| 2 d r + ǫ −1 | f 0| 2 + δ t − s + E Z t s Z Z |Γr, z| 2 mdz d r. Note that, similarly as before, we have Z Z |Gu, z| 2 mdz ≤ 1 + ǫK|u| 2 + 1 + ǫ −1 Z Z |G0, z| 2 mdz for any u ∈ H, therefore, by definition of Γ, E Z t s Z Z |Γr, z| 2 mdz d r ≤ 1 + ǫK Z t s E |ur| 2 d r + 1 + ǫ −1 G0, · 2 L 2 Z,m t − s. Setting ω 2 := ω 1 − K − ǫ1 + K, N := ǫ −1 | f 0| 2 + δ + 1 + ǫ −1 G0, · 2 L 2 Z,m , we are left with E |ut| 2 ≤ E|x| 2 − ω 2 Z t s E |ur| 2 d r + N t − s. We can now choose ǫ such that ω 2 0. Gronwall’s inequality then yields E |ut| 2 ® 1 + e −ω 2 t+|s| E |x| 2 . 24 Set u 1 t := ut; s 1 , x, u 2 t := ut; s 2 , x and wt = u 1 t − u 2 t, with s 2 s 1 . Then w satisfies the equation d w + Aw d t + f u 1 − f u 2 d t = ηw d t + Gu 1 − Gu 2 d ¯ µ, 1548 with initial condition ws 1 = x − u 2 s 1 , in the generalized mild sense. By an argument completely similar to the above one, based on regularizations, Itô’s formula, and passage to the limit, we obtain E |wt| 2 ≤ E|x − u 2 s 1 | 2 − ω 1 − K Z t s 1 E |wr| 2 d r, and hence, by Gronwall’s inequality, E |u 1 0 − u 2 0| 2 = E|w0| 2 ≤ e −ω 1 −K|s 1 | E |x − u 2 s 1 | 2 . Estimate 24 therefore implies that there exists a constant N such that E |u 1 0 − u 2 0| 2 ≤ e −ω 1 −K|s 1 | N 1 + E|x| 2 , 25 which converges to zero as s 1 → −∞. We have thus proved that {u0; s, x} s≤0 is a Cauchy net in L 2 , hence there exists ζ = ζx ∈ L 2 such that u0; s, x → ζ in L 2 as s → −∞. Let us show that ζ does not depend on x. In fact, let x, y ∈ L 2 and set u 1 t = ut; s, x, u 2 t = ut; s, y. Yet another argument based on approximations, Itô’s formula for the square of the norm and the monotonicity assumption 20 yields, in analogy to a previous computation, E |u 1 0 − u 2 0| 2 ≤ e −ω 1 −K|s| E |x − y| 2 , 26 which implies ζx = ζ y, whence the claim. Finally, 25 immediately yields 22. Proof of Proposition 14. Let ν be the law of the random variable ζ constructed in the previous lemma. Since ζ ∈ L 2 , i will follow immediately once we have proved that ν is invariant for P t . The invariance and the uniqueness of ν is a well-known consequence of the previous lemma, see e.g. [10]. Let us prove ii: we have Z H P t ϕx λ d x − Z H ϕ y νd y = Z H Z H P t ϕx λ d x νd y − Z H Z H P t ϕ y λ d x νd y ≤ Z H×H |P t ϕx − P t ϕ y| λ d x νd y ≤ [ϕ] 1 e −ω 1 t Z H×H |x − y| λ d x νd y, where in the last step we have used the estimate 26.

3.2 Weakly dissipative case

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52