Reversibility getdoc21d6. 741KB Jun 04 2011 12:04:10 AM

We have just proved that T -meshes are either disjoint or one is contained in the other, so maximal T -meshes must be mutually disjoint. Let O T := {x, t ∈ R 2 c : t ≥ T }\N T . It is easy to see that O T ⊂ R × T, ∞. Consider a point z = x, t ∈ R 2 with t T . If z 6∈ O T , then by Lemma 2.7 there exist ˆr ∈ ˆ W r z and ˆl ∈ ˆ W l z with the property that there does not exist a z ′ = x ′ , t ′ with t ′ ≥ T such that ˆr ∼ z ′ in ˆl, hence by Lemma 3.3, z is not contained in any T-mesh. On the other hand, if z ∈ O T , then by Lemma 2.7 b and the nature of convergence of paths in the Brownian web see [SS08, Lemma 3.4 a], there exist ˆr ∈ ˆ W r and ˆl ∈ ˆ W l starting from points x − , t and x + , t, respectively, with x − x x + , such that ˆrs = ˆls for some s ∈ T, t. Now, setting u := inf {s ∈ T, t : ˆrs = ˆls} and z ′ := ˆru, u, by Lemma 3.3, M z ′ ˆr, ˆl is a maximal T -mesh that contains z.

3.2 Reversibility

Recall from 1.15 the definition of the image set N T of the Brownian net started at time T . It follows from [SS08, Prop. 1.15] that the law of N −∞ is symmetric with respect to time reversal. In the present section, we extend this property to T −∞ by showing that locally on R × T, ∞, the law of N T is absolutely continuous with respect to its time-reversed counterpart. This is a useful property, since it allows us to conclude that certain properties that hold a.s. in the forward picture also hold a.s. in the time-reversed picture. For example, meeting and separation points have a similar structure, related by time reversal. Note that this form of time-reversal is different from, and should not be confused with, the dual Brownian net. We write µ ≪ ν when a measure µ is absolutely continuous with respect to another measure ν, and µ ∼ ν if µ and ν are equivalent, i.e., µ ≪ ν and ν ≪ µ. Proposition 3.6. [Local reversibility] Let −∞ S, T ∞ and let N T be the image set of the Brownian net started at time T . Define R S : R 2 → R 2 by R S x, t := x, S − t. Let K ⊂ R 2 be a compact set such that K, R S K ⊂ R×T, ∞. Then P[N T ∩ R S K ∈ · ] ∼ P[R S N T ∩ K ∈ · ]. 3.62 Proof By the reversibility of the backbone, it suffices to prove that P[N T ∩ K ∈ · ] ∼ P[N −∞ ∩ K ∈ · ]. 3.63 Choose some T s min {t : x, t ∈ K}. By [SS08, Prop. 1.12], the set ˆ ξ K s := { ˆ πs : ˆ π ∈ ˆ N K} 3.64 is a.s. a finite subset of R, say ˆ ξ K s = {X 1 , . . . , X M } with X 1 · · · X M . 3.65 For U = T, −∞, let us write ξ U s := {πs : π ∈ N , σ π = U}. 3.66 By Lemma 2.7 and the fact that s is deterministic, for any z = x, t ∈ K, one has z ∈ N U if and only if there exist ˆr ∈ ˆ W r z and ˆl ∈ ˆ W l z such that ˆr ˆl on [s, t and ξ U s ∩ ˆrs,ˆls 6= ;. Thus, we can write N U ∩ K = [ i ∈I U N i , 3.67 838 where N i := z = x, t ∈ K : ∃ˆr ∈ ˆ W r z, ˆl ∈ ˆ W l z s.t. ˆr ˆl on [s, t and ˆrs ≤ X i , ˆls ≥ X i+1 3.68 and I U := i : 1 ≤ i ≤ M − 1, ξ U s ∩ X i , X i+1 6= ; . 3.69 It follows that P[N U ∩ K ∈ · ] = E h P h [ i ∈I U N i ∈ · {X 1 , . . . , X M } ii , 3.70 where P h [ i ∈I U N i ∈ · {X 1 , . . . , X M } i = X I ⊂{1,...,M−1} P h [ i ∈I N i ∈ · {X 1 , . . . , X M } i P h I U = I {X 1 , . . . , X M } i . 3.71 Here the sum ranges over all subsets I of {1, . . . , M − 1}. The statement of the proposition now follows from 3.70 and 3.71 by observing that P h I U = I {X 1 , . . . , X M } i a.s. 3.72 for all I ⊂ {1, . . . , M − 1} and U = T, −∞.

3.3 Classification according to incoming paths

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52