Iterated Brownian motions Iterated two-sided fractional Brownian motions The ‘true’ iterated fractional Brownian motion

≤ X {k∈Z, |kǫ h |≤ǫ+ǫ h } P sup s |Y s| ≤ ǫ + ǫ h ≤ 2ǫ + ǫ h ǫ h P sup s |Y s| ≤ ǫ + ǫ h ≤ 4ǫ 1−h P sup s |Y s| ≤ ǫ + ǫ h , where we used the Anderson property in the fourth step. Taking logarithms, multiplying with −2ǫ τ ℓ2ǫ −1 , taking limits, and using that ℓ is a slowly vary- ing function implies that lim ǫ→0 ǫ τ ℓǫ −1 ‚ − log P ‚ sup s,t |Y s − Y t| ≤ ǫ ŒŒ ≥ 2 τ lim ǫ→0 ǫ τ ℓǫ −1 − log P sup s |Y s| ≤ ǫ + ǫ h = 2 τ lim ǫ→0 ǫ ǫ + ǫ h τ ǫ + ǫ h τ ℓǫ + ǫ h −1 − log P sup s |Y s| ≤ ǫ + ǫ h = 2 τ lim ǫ→0 ǫ τ ℓǫ −1 − log P sup s |Y s| ≤ ǫ , which finishes the proof. ƒ Proof of Lemma 8: It is sufficient to check 4 for cylinder sets. Fix d ≥ 1 and let B be a symmetric convex set in R d . Let t 1 , . . . , t d ∈ T and fix any function e : T → R 1 . Define a cylinder A := a : T → R : at 1 , . . . , at d ∈ B and the corresponding random cylinders A Y,e := f : R → R : f Y t 1 − et 1 , . . . , f Y t d − et d ∈ B . Then we have P X ◦ Y ∈ A + e = P X Y t 1 − et 1 , . . . , X Y t d − et d ∈ B = E P € X ∈ A Y,e |Y Š = E P € X ∈ A Y,0 + et 1 , . . . , et d |Y Š ≤ E P € X ∈ A Y,0 |Y Š = P X ◦ Y ∈ A . ƒ 4 Examples

4.1 Iterated Brownian motions

As a first example let us consider n-iterated Brownian motions: X n t := X n X n−1 t, X 1 t = X 1 t, 10 1999 where the X i are independent two-sided Brownian motions. This process is 2 −n -self-similar. The small deviation problem can be solved by using n − 1-times Theorem 4 and Lemmas 7 and 8. We summarize the result in the following corollary. A simulation for X 1 , X 2 , and X 4 can be seen in Figure 4.1. Corollary 10. Let X n be the process given by 10, where the X i are independent two-sided Brownian motions. Then − log P ‚ sup t∈[0,1] |X n t| ≤ ǫ Œ ∼ π 2 1 − 2 −n 2 n+12 n −1 ǫ −11−2 −n . 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −1.5 −1 −0.5 0.5 1 1.5 2 t X n t realizations of independent iterated Brownian motions 4−times iterated BM iterated BM BM Figure 4.1: typical sample paths of iterated Brownian motions

4.2 Iterated two-sided fractional Brownian motions

More generally, one can consider n-iterated fractional Brownian motions, given by 10, where this time X 1 , . . . , X n are independent two-sided fractional Brownian motions with Hurst parameters H 1 , . . . , H n , respectively. The process X n is H 1 · . . . · H n -self-similar. Its small deviation order is given by − log P ‚ sup t∈[0,1] |X n t| ≤ ǫ Œ ∼ c n ǫ −τ n , where 1 τ n = n X j=1 H j · . . . · H n 11 and c n is defined iteratively by c n := 1 + τ n−1 c 1τ n−1 n−1 2cH n τ n−1 τ n−1 1+τ n−1 , c 1 = cH 1 , and cH is the small deviation constant of a fractional Brownian motion with Hurst parameter H. 2000 Even for n = 2, i.e. fractional Brownian motions X 1 and X 2 with Hurst parameters H 1 , H 2 , respec- tively, this leads to the new result that the small deviation order is − log P ‚ sup t∈[0,1] |X 2 X 1 t| ≤ ǫ Œ ∼ 1 + 1 H 1 ” cH 1 H 1 2H 1 cH 2 — 11+H 1 ǫ − 1 H21+H1 .

4.3 The ‘true’ iterated fractional Brownian motion

Note that in the last subsection we obtained the small deviation order for ‘iterated fractional Brow- nian motion’ X ◦ Y , where X was a two-sided fractional Brownian motion, i.e. a process consisting of two independent branches for positive and negative arguments, and Y was another fractional Brownian motion independent of the two branches of X . We shall now calculate the small devia- tion order for the ‘true’ iterated fractional Brownian motion, namely, using Y as above but X being a centered Gaussian process on R with covariance EX tX s = 1 2 € |s| 2H + |t| 2H − |t − s| 2H Š , t, s ∈ R. 12 The general result is as follows. Theorem 11. Let X be a fractional Brownian motion with Hurst index H as given in 12 and Y be a continuous process independent of X satisfying − log P ‚ sup t∈[0,1] |Y t − Y s| ≤ ǫ Œ ∼ κǫ −τ . 13 Then − log P ‚ sup t∈[0,1] |X Y t| ≤ ǫ Œ ∼ κ 11+τ τ −τ1+τ 1 + τcH τ1+τ ǫ −τH1+τ , where cH is the small deviation constant of a fractional Brownian motion. This theorem can be applied to many processes Y . We recall that 13 can be obtained e.g. via Lemma 7 from the small deviation order. In particular, if Y is also a fractional Brownian motion we get the following result for the ‘true’ iterated Brownian motion. Corollary 12. Let X be a fractional Brownian motion with Hurst index H 2 as given in 12 and Y be a continuous modification of a fractional Brownian motion with Hurst index H 1 independent of X . Then − log P ‚ sup t∈[0,1] |X Y t| ≤ ǫ Œ ∼ 1 + 1 H 1 ” cH 1 H 1 2H 1 cH 2 — 11+H 1 ǫ − 1 H21+H1 . Recall that we obtain the same logarithmic small deviation order as for a two-sided fBM. Moreover, the iteration of n ‘true’ fractional Brownian motions provides the same asymptotics as obtained in 11 for the two-sided fBM. Note that, in spite of the identity of the assertions, Theorem 11 does not follow from Theorem 4, since X is not two-sided. We will show now how the stationarity of increments of the ‘true’ fBM replaces the independence property of the two-sided process. For the proof of Theorem 11, we need the following lemma. 2001 Lemma 13. For any δ ∈ 0, 1 there exists K δ 0 such that for all N ≤ 0 ≤ M , for all ǫ 0, and for any centered Gaussian process X t, t ∈ R, with stationary increments it is true that P ‚ sup 0≤t≤M +|N | |X t| ≤ 1 − δǫ Œ P |X N | ≤ ǫK δ ≤ P ‚ sup N ≤t≤M |X t| ≤ ǫ Œ ≤ P ‚ sup 0≤t≤M +|N | |X t| ≤ 1 + δǫ Œ P |X N | ≤ ǫK δ −1 . Proof: To see the upper bound observe that the stationarity of increments and weak correlation inequality Theorem 1.1 in [15] yield P ‚ sup 0≤t≤M +|N | |X t| ≤ 1 + δǫ Œ = P ‚ sup N ≤t≤M |X t − X N | ≤ 1 + δǫ Œ ≥ P ‚ sup N ≤t≤M |X t| ≤ 1 + δ2ǫ, |X N | ≤ δǫ2 Œ ≥ P ‚ sup N ≤t≤M |X t| ≤ ǫ Œ P |X N | ≤ ǫK δ . For the lower bound, using the same arguments in inverse order we get P ‚ sup N ≤t≤M |X t| ≤ ǫ Œ = P ‚ sup N ≤t≤M |X t − X N + X N | ≤ ǫ Œ ≥ P ‚ sup N ≤t≤M |X t − X N | ≤ 1 − δ2ǫ; |X N | ≤ δǫ2 Œ ≥ P ‚ sup N ≤t≤M |X t − X N | ≤ 1 − δǫ Œ P |X N | ≤ ǫK δ = P ‚ sup 0≤t≤|N |+M |X t| ≤ 1 − δǫ Œ P |X N | ≤ ǫK δ . ƒ Proof of Theorem 11: Let δ 0 and define as before N := inf t∈[0,1] Y t and M := sup t∈[0,1] Y t. Then Lemma 13 yields that, for some constant K δ 0, P ‚ sup t∈[0,1] |X Y t| ≤ ǫ Œ = E – P ‚ sup N ≤t≤M |X t| ≤ ǫ Y Œ™ ≥ E   P sup 0≤t≤M +|N | |X t| ≤ 1 − δǫ Y P ‚ |X N | ≤ ǫ K δ Y Œ  2002 = E – P ‚ sup 0≤t≤1 |X t| ≤ 1 − δǫ M + |N | H Y Œ P ‚ |X 1| ≤ ǫ K δ |N | H Y Œ™ ≥ E – P ‚ sup 0≤t≤1 |X t| ≤ 1 − δǫ M + |N | H Y Œ P ‚ |X 1| ≤ ǫ K δ M + |N | H Y Œ™ =: E f M + |N |gM + |N | . Note that f , g ≥ 0 are non-increasing functions. Thus, by the FKG inequality cf. e.g. [20], p. 65, the last term is bounded from below by E f M + |N | · EgM + |N | = E – P ‚ sup 0≤t≤1 |X t| ≤ 1 − δǫ M + |N | H Y Œ™ · E P |X 1| ≤ ǫ K δ M + |N | H . The first term can be handled as in the proof of Theorem 4, the resulting order is − log E P ‚ sup 0≤t≤1 |X t| ≤ 1 − δǫ M + |N | H Y Œ ∼ κ 11+τ τ −τ1+τ 1 + τcH τ1+τ 1 − δǫ −τH1+τ . On the other hand, one easily proves that E P |X 1| ≤ ǫ K δ M + |N | H admits a lower bound of order ǫ, as ǫ → 0. Therefore, − log P ‚ sup t∈[0,1] |X Y t| ≤ ǫ Œ ® κ 11+τ τ −τ1+τ 1 + τcH τ1+τ 1 − δǫ −τH1+τ . Letting δ → 0 finishes the proof. The upper bound can be proved along the same lines or by using the Hölder inequality instead of the FKG inequality. ƒ 5 The example of α-time Brownian motion

5.1 Motivation

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52