Proof of Theorem 2.4 getdoc40ab. 189KB Jun 04 2011 12:04:18 AM

432 Electronic Communications in Probability i N n d → N ; ii We have λM c = 0 and the following two conditions hold: a ′ lim m →m lim sup n →∞ |n[PM m,n x − PM m −1,n x] − λM x | = 0, for any x 0, x 6∈ D ′ , b ′ lim m →m lim sup n →∞ |n[PN m,n ∈ M, M m,n x − PN m −1,n ∈ M, M m −1,n x] −λM ∩ M x | = 0, for any x 0, x 6∈ D ′ and for any set M ∈ J x,λ . Remark 2.6. Note that PM m,n x − PM m −1,n x = P max 1 ≤ j≤m−1 |X j,n | ≤ x, |X m,n | x. Remark 2.7. Suppose that m = 1 in Theorem 2.5. One can prove that in this case, the limit N is a Poisson process of intensity ν given by: νB = λ{µ ∈ M p E\{o}; µB = 1}, ∀B ∈ B. 3 The Proofs

3.1 Proof of Theorem 2.4

Before giving the proof, we need some preliminary results. Lemma 3.1. Let E be a LCCB space and M = ∩ d i=1 {µ ∈ M p E; µB i ≥ l i } for some B i ∈ B, l i ≥ 1 integers and d ≥ 1. Then: i M is closed with respect to the vague topology; ii ∂ M ⊂ ∪ d i=1 {µ ∈ M p E; µ∂ B i 0}. Proof: Note that ∂ M ⊂ ∪ d i=1 ∂ M i , where M i = {µ ∈ M p E; µB i ≥ l i }. Since the finite intersec- tion of closed sets is a closed set, it suffices to consider the case d = 1, i.e. M = {µ ∈ M p E; µB ≥ l } for some B ∈ B and l ≥ 1. i Let µ n n ⊂ M be such that µ n v → µ. If µ∂ B = 0, then µ n B → µB, and since µ n B ≥ l for all n, it follows that µB ≥ l. If not, we proceed as in the proof of Lemma 3.15 of [ 21 ]. Let B δ be a δ-swelling of B. Then S = {δ ∈ 0, δ ]; µ∂ B δ 0} is a countable set. By the previous argument, µB δ ≥ l for all δ ∈ 0, δ ]\S. Let δ n n ∈ 0, δ ]\S be such that δ n ↓ 0. Since µB δ n ≥ l for all n, and µB δ n ↓ µB, it follows that µB ≥ l, i.e. µ ∈ M. ii By part i, ∂ M = ¯ M \M o = M ∩ M o c . We will prove that ∂ M ⊂ {µ ∈ M; µ∂ B 0}, or equivalently A := {µ ∈ M; µ∂ B = 0} ⊂ M o . Since M o is the largest open set included in M and A ⊂ M, it suffices to show that A is open. Let µ ∈ A and µ n n ⊂ M p E be such that µ n v → µ. Then µ n B → µB, and since µB ≥ l and {µ n B} n are integers, it follows that µ n B ≥ l for all n ≥ n 1 , for some n 1 . On the other hand, µ n ∂ B → µ∂ B, since ∂ B ∈ B and µ∂ B = 0 note that ∂ ∂ B = ∂ B. Since µ∂ B = 0 and {µ n ∂ B} n are integers, it follows that µ n ∂ B = 0 for all n ≥ n 2 , for some n 2 . Hence µ n ∈ A for all n ≥ max{n 1 , n 2 }. ƒ Conditions for Point Process Convergence 433 Lemma 3.2. Let E be a LCCB space and Q n n , Q be probability measures on M p E. Let B Q be the class of all sets B ∈ B which satisfy: Q {µ ∈ M p E; µ∂ B 0} = 0, and J Q be the class of sets M = ∩ d i=1 {µ ∈ M p E; µB i ≥ l i } for some B i ∈ B Q , l i ≥ 1 integers and d ≥ 1. Then Q n w → Q if and only if Q n M → QM for all M ∈ J Q . Proof: Let N n n , N be point processes on E, defined on a probability space Ω, F , P, such that P ◦ N −1 n = Q n for all n, and P ◦ N −1 = Q. Note that B Q = B N := {B ∈ B; N ∂ B = 0 a.s.}. By definition, N n d → N if and only if Q n w → Q. By Theorem 4.2 of [ 15 ], N n d → N if and only if N n B 1 , . . . , N n B d d → N B 1 , . . . , N B d for any B 1 , . . . , B d ∈ B N and for any d ≥ 1. Since these random vectors have values in Z d + , the previous convergence in distribution is equivalent to: PN n B 1 = l 1 , . . . , N n B d = l d → PN B 1 = l 1 , . . . , N B d = l d for any l 1 , . . . , l d ∈ Z + , which is in turn equivalent to PN n B 1 ≥ l 1 , . . . , N n B d ≥ l d → PN B 1 ≥ l 1 , . . . , N B d ≥ l d for any l 1 , . . . , l d ∈ Z + . Finally, it suffices to consider only integers l i ≥ 1 since, if there exists a set I ⊂ {1, . . . , d} such that l i = 0 for all i ∈ I and l i ≥ 1 for i 6∈ I, then PN n B 1 ≥ l 1 , . . . , N n B d ≥ l d = PN n B i ≥ l i , i 6∈ I → PN B i ≥ l i , i 6∈ I = PN B 1 ≥ l 1 , . . . , N B d ≥ l d . ƒ Proof of Theorem 2.4: Note that {max j ≤r n |X j,n | x} = {N r n ,n ∈ M x }. Suppose that i holds. As in the proof of Theorem 3.6 of [ 2 ], it follows that λM c = 0 and a holds. Moreover, we have P n,x w → P x where P n,x and P x are probability measures on M p E defined by: P n,x M = k n PN r n ,n ∈ M ∩ M x k n PN r n ,n ∈ M x and P x M = λM ∩ M x λM x . Therefore, P n,x M → P x M for any M ∈ M p E with P x ∂ M = 0. Since k n PN r n ,n ∈ M x → λM x by a, it follows that k n PN r n ,n ∈ M ∩ M x → λM ∩ M x , 3 for any M ∈ M p E with λ∂ M ∩ M x = 0. In particular, 3 holds for a set M = ∩ d i=1 {µ ∈ M p E; µB i ≥ l i }, with B i ∈ B x,λ , l i ≥ 1 integers and d ≥ 1. To see this, note that by Lemma 3.1, ∂ M ∩ M x ⊂ ∪ d i=1 {µ ∈ M x ; µ∂ B i 0}, and hence λ∂ M ∩ M x ≤ d X i=1 λ{µ ∈ M x ; µ∂ B i 0} = 0. Suppose that ii holds. As in the proof of Theorem 3.6 of [ 2 ], it suffices to show that P n,x w → P x . This follows by Lemma 3.2, since the class of sets B ∈ B which satisfy: P x {µ ∈ M p E; µ∂ B 0} = 0 coincides with B x,λ . ƒ 434 Electronic Communications in Probability

3.2 Proof of Theorem 2.5

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52