Proof of Proposition getdoc19fa. 172KB Jun 04 2011 12:04:08 AM

Scaling limit of senile RRW 109 Now T n is independent of X 1 , . . . , X n−1 , and conditionally on T n being odd resp. even, S τ n −S τ n−1 resp. S τ n − S τ n −1 is uniformly distributed over the 2d − 1 unit vectors in Z d other than −X [2] n−1 resp. other than X [2] n−1 . It is then an easy exercise to verify that {X n } n≥1 is a finite, irreducible and aperiodic Markov chain with initial distribution 3.2 and transition probabilities given by P X n = u, v|X n−1 = u ′ , v ′ = 1 2d − 1 ×    p, if u = 0 and v 6= −v ′ , 1 − p, if u = −v ′ and v 6= v ′ , 0, otherwise. 3.3 By symmetry, the first 2d entries of the unique stationary distribution ~ π ∈ M 1 X are all equal say π a and the remaining 2d2d − 1 entries are all equal say π b , and it is easy to check that π a = p 2d , π b = 1 − p 2d2d − 1 . 3.4 As an irreducible, aperiodic, finite-state Markov chain, {X n } n≥1 has exponentially fast, strong mix- ing, i.e. there exists a constant c and t 1 such that for every k ≥ 1, αk := sup n n |PF ∩ G − PF PG| : F ∈ σX j , j ≤ n, G ∈ σX j , j ≥ n + k o ≤ c t k . 3.5 Since Y n is measurable with respect to X n , the sequence Y n also has exponentially fast, strong mixing. To verify Proposition 3.1, we use the following multidimensional result that follows easily from [8, Corollary 1] using the Cramér-Wold device. Corollary 3.2. Suppose that W n = W 1 n , . . . , W d n , n ≥ 0 is a sequence of R d -valued random variables such that E[W n ] = 0, E[|W n | 2 ] ∞ and E[n −1 P n i=1 P n i ′ =1 W j i W l i ′ ] → σ 2 I j=l , as n → ∞. Further suppose that W n is α-strongly mixing and that there exists β ∈ 2, ∞] such that ∞ X k=1 αk 1−2 β ∞, and lim sup n→∞ kW n k β ∞, 3.6 then W n t := σ 2 n − 1 2 P ⌊nt⌋ i=1 W i =⇒ B d t as n → ∞, where the convergence is in D[0, 1], R d equipped with the uniform topology. 3.1 Proof of Proposition 3.1 Since S τ n = P n m=1 Y m where |Y m | ≤ 2, and the sequence {Y n } n≥0 has exponentially fast strong mixing, Proposition 3.1 will follow from Corollary 3.2 provided we show that E   1 n n X i=1 n X i ′ =1 Y j i Y l i ′   → p d − p I j=l , 3.7 where the superscript j denotes the jth component of the vector, e.g. Y m = Y 1 m , . . . , Y d m . By symmetry, E[Y j i Y l i ′ ] = 0 for all i, i ′ and j 6= l, and it suffices to prove 3.7 with j = l = 1. For n ≥ 2, E[X [2],1 n |X n−1 ] = 2p−1 2d−1 X [2],1 n−1 , so by induction and the Markov property, E [X [2],1 n |X m ] = 2p − 1 2d − 1 n−m X [2],1 m , for every n ≥ m ≥ 1. 3.8 110 Electronic Communications in Probability For n ≥ 2, E[Y 1 n |X n−1 ] = p−2d1−p 2d−1 X [2],1 n−1 , and the Markov property for X n implies that E [Y 1 n |X m ] = p − 2d1 − p 2d − 1 2p − 1 2d − 1 n−1−m X [2],1 m , for n m ≥ 1. 3.9 For n m ≥ 1, and letting r = 2p−1 2d−1 we have E [Y 1 n Y 1 m ] =E[Y 1 m E [Y 1 n |X m ]] = p − 2d1 − p 2d − 1 r n−1−m E [Y 1 m X [2],1 m ] = p − 2d1 − p 2d − 1 r n−1−m € E [X [1],1 m X [2],1 m ] + E[X [2],1 m 2 ] Š = p − 2d1 − p 2d − 1 r n−1−m × 1−p d2d−1 + 1 d , m ≥ 2 p d2d−1 + 1 d , m = 1. 3.10 Lastly E[|Y 1 | 2 ] = 1 − p + 4d p 2d−1 and E[|Y m | 2 ] = p + 4d1−p 2d−1 , for m ≥ 2. Combining these results, we get that E   n X l=1 n X m=1 Y 1 l Y 1 m   =2 n X l=2 l−1 X m=2 E [Y 1 l Y 1 m ] + 2 n X l=2 E [Y 1 l Y 1 1 ] + n X l=1 E [|Y 1 l | 2 ] = 2 d p − 2d1 − p 2d − 1   2d − p 2d − 1 n X l=2 l−2 X k=0 r k + n X l=2 2d − 1 + p 2d − 1 r l−2   + 1 − p d + 4p 2d − 1 + n − 1 p d + 41 − p 2d − 1 . 3.11 Since r 1, the second sum over l is bounded by a constant, uniformly in n. Thus, this is equal to 2 d p − 2d1 − p 2d − 1 2d − p 2d − 1 n X l=2 1 − r l−2 1 − r + n p d + 41 − p 2d − 1 + O 1 =n 2 d1 − r p − 2d1 − p 2d − 1 2d − p 2d − 1 + p d + 41 − p 2d − 1 + O 1 =n p − 2d1 − p2d − p dd − p2d − 1 + p d + 41 − p 2d − 1 + O 1 = n p d − p + O 1. 3.12 Dividing by n and taking the limit as n → ∞ verifies 3.7 and thus completes the proof of Propo- sition 3.1. 4 Proof of Theorem 2.1 Theorem 2.1 is a consequence of convergence of the joint distribution of the rescaled stopping time process and the random walk at those stopping times as in the following proposition. Proposition 4.1. Suppose that assumptions A1 and A2 hold for some α 0, then as n → ∞,    S τ ⌊nt⌋ Æ p d−p n , τ ⌊nt⌋ g α n    =⇒ B d t, V α t , 4.1 Scaling limit of senile RRW 111 where the convergence is in € D[0, 1], R d , U Š × D[0, 1], R, J 1 , and where U and J 1 denote the uniform and Skorokhod J 1 topologies respectively. Proof of Theorem 2.1 assuming Proposition 4.1. Since ⌊g −1 α n⌋ is a sequence of positive integers such that ⌊g −1 α n⌋ → ∞ and n g α ⌊g −1 α n⌋ → 1 as n → ∞, it follows from 4.1 that as n → ∞,    S τ ⌊⌊g−1 α n⌋t⌋ Æ p d−p ⌊g −1 α n⌋ , τ ⌊⌊g −1 α n⌋t⌋ n    =⇒ B d t, V α t , 4.2 in € D[0, 1], R d , U Š × D[0, 1], R, J 1 . Let Y n t = S τ ⌊⌊g−1 α n⌋t⌋ Æ p d−p ⌊g −1 α n⌋ , and T n t = τ ⌊⌊g −1 α n⌋t⌋ n , 4.3 and let T −1 n t := inf{s ≥ 0 : T n s t} = inf{s ≥ 0 : τ ⌊⌊g −1 α n⌋s⌋ nt}. It follows e.g. see the proof of Theorem 1.3 in [1] that Y n T −1 n t =⇒ B d V −1 α t in € D[0, 1], R d , U Š . Thus, S τ ⌊⌊g−1 α n⌋T −1 n t⌋ Æ p d−p g −1 α n =⇒ B d V −1 α t. 4.4 By definition of T −1 n , we have τ ⌊⌊g −1 α n⌋T −1 n t⌋−1 ≤ nt ≤ τ ⌊⌊g −1 α n⌋T −1 n t⌋ and hence |S ⌊nt⌋ −S τ ⌊⌊g−1 α n⌋T −1 n t⌋ | ≤ 3. Together with 4.4 and the fact that g −1 α n ⌊g −1 α n⌋ → 1, this proves Theorem 2.1. 5 Proof of Proposition 4.1 The proof of Proposition 4.1 is broken into two parts. The first part is the observation that the marginal processes converge, i.e. that the time-changed walk and the time-change converge to B d t and V α t respectively, while the second is to show that these two processes are asymptoti- cally independent.

5.1 Convergence of the time-changed walk and the time-change.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52