GOY and Sabra shell models

2 Description of the model

2.1 GOY and Sabra shell models

Let H be the set of all sequences u = u 1 , u 2 , . . . of complex numbers such that P n |u n | 2 ∞. We consider H as a real Hilbert space endowed with the inner product ·, · and the norm |·| of the form u, v = Re X n ≥1 u n v ∗ n , |u| 2 = X n ≥1 |u n | 2 , 2.1 where v ∗ n denotes the complex conjugate of v n . Let k 0, µ 1 and for every n ≥ 1, set k n = k µ n . Let A : DomA ⊂ H → H be the non-bounded linear operator defined by Au n = k 2 n u n , n = 1, 2, . . . , DomA = n u ∈ H : X n ≥1 k 4 n |u n | 2 ∞ o . The operator A is clearly self-adjoint, strictly positive definite since Au, u ≥ k 2 |u| 2 for u ∈ DomA. For any α 0, set H α = DomA α = {u ∈ H : X n ≥1 k 4 α n |u n | 2 +∞}, kuk 2 α = X n ≥1 k 4 α n |u n | 2 for u ∈ H α . 2.2 Let H = H, V := DomA 1 2 = n u ∈ H : X n ≥1 k 2 n |u n | 2 +∞ o ; also set H = H 1 4 , kuk H = kuk 1 4 . Then V as each of the spaces H α is a Hilbert space for the scalar product u, v V = Re P n k 2 n u n v ∗ n , u, v ∈ V and the associated norm is denoted by kuk 2 = X n ≥1 k 2 n |u n | 2 . 2.3 The adjoint of V with respect to the H scalar product is V ′ = {u n ∈ C N : P n ≥1 k −2 n |u n | 2 +∞} and V ⊂ H ⊂ V ′ is a Gelfand triple. Let 〈u , v〉 = Re €P n ≥1 u n v ∗ n Š denote the duality between u ∈ V and v ∈ V ′ . Clearly for 0 ≤ α β, u ∈ H β and v ∈ V we have kuk 2 α ≤ k 4 α−β kuk 2 β , and kvk 2 H ≤ |v| kvk, 2.4 where the last inequality is proved by the Cauchy-Schwarz inequality. Set u −1 = u = 0, let a, b be real numbers and B : H × V → H or B : V × H → H denote the bilinear operator defined by [Bu, v] n = −i € ak n+1 u ∗ n+1 v ∗ n+2 + bk n u ∗ n −1 v ∗ n+1 − ak n −1 u ∗ n −1 v ∗ n −2 − bk n −1 u ∗ n −2 v ∗ n −1 Š 2.5 for n = 1, 2, . . . in the GOY shell-model see, e.g., [25] or [Bu, v] n = −i € ak n+1 u ∗ n+1 v n+2 + bk n u ∗ n −1 v n+1 + ak n −1 u n −1 v n −2 + bk n −1 u n −2 v n −1 Š , 2.6 in the Sabra shell model introduced in [21]. 2554 Note that B can be extended as a bilinear operator from H × H to V ′ and that there exists a constant C 0 such that given u, v ∈ H and w ∈ V we have |〈Bu, v , w〉| + | Bu, w , v | + | Bw, u , v| ≤ C |u| |v| kwk. 2.7 An easy computation proves that for u, v ∈ H and w ∈ V resp. v, w ∈ H and u ∈ V , 〈Bu, v , w〉 = − Bu, w , v resp. Bu, v , w = − Bu, w , v . 2.8 Furthermore, B : V × V → V and B : H × H → H; indeed, for u, v ∈ V resp. u, v ∈ H we have kBu, vk 2 = X n ≥1 k 2 n |Bu, v n | 2 ≤ C kuk 2 sup n k 2 n |v n | 2 ≤ C kuk 2 kvk 2 , 2.9 |Bu, v| ≤ C kuk H kvk H . For u, v in either H, H or V , let Bu := Bu, u. The anti-symmetry property 2.8 implies that |〈Bu 1 − Bu 2 , u 1 − u 2 〉 V | = |〈Bu 1 − u 2 , u 2 〉 V | for u 1 , u 2 ∈ V and |〈Bu 1 − Bu 2 , u 1 − u 2 〉| = |〈Bu 1 − u 2 , u 2 〉| for u 1 ∈ H and u 2 ∈ V . Hence there exist positive constants ¯ C 1 and ¯ C 2 such that |〈Bu 1 − Bu 2 , u 1 − u 2 〉 V | ≤ ¯ C 1 ku 1 − u 2 k 2 ku 2 k, ∀u 1 , u 2 ∈ V, 2.10 |〈Bu 1 − Bu 2 , u 1 − u 2 〉| ≤ ¯ C 2 |u 1 − u 2 | 2 ku 2 k, ∀u 1 ∈ H, ∀u 2 ∈ V . 2.11 Finally, since B is bilinear, Cauchy-Schwarz’s inequality yields for any α ∈ [0, 1 2 ], u, v ∈ V : A α Bu − A α Bv , A α u − v ≤ A α Bu − v, u + A α Bv, u − v , A α u − v ≤ Cku − vk 2 α kuk + kvk. 2.12 In the GOY shell model, B is defined by 2.5; for any u ∈ V , Au ∈ V ′ we have 〈Bu, u, Au〉 = Re − i X n ≥1 u ∗ n u ∗ n+1 u ∗ n+2 µ 3n+1 k 3 a + bµ 2 − aµ 4 − bµ 4 . Since µ 6= 1, a1 + µ 2 + bµ 2 = 0 if and only if 〈Bu, u , Au〉 = 0, ∀u ∈ V. 2.13 On the other hand, in the Sabra shell model, B is defined by 2.6 and one has for u ∈ V , 〈Bu, u , Au〉 = k 3 Re − i X n ≥1 µ 3n+1 h a + b µ 2 u ∗ n u ∗ n+1 u n+2 + a + bµ 4 u n u n+1 u ∗ n+2 i . Thus Bu, u, Au = 0 for every u ∈ V if and only if a + bµ 2 = a + bµ 4 and again µ 6= 1 shows that 2.13 holds true.

2.2 Stochastic driving force

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52