Proof of Lemma getdoc792e. 320KB Jun 04 2011 12:04:32 AM

4 Proof of the Proposition 3.2 As pointed out in Remark 3.4, Proposition 3.2 relies on the following key lemma: Lemma 4.1. For every ǫ and δ 0, there exists L 0 such that E Y ” g 1 Y Z a,b — 6 δPb − a ∈ τ 42 for every a 6 b in B 1 such that b − a ≥ ǫL. Given this lemma, the proof of Proposition 3.2 is very similar to the proof of [10, Proposition 2.3], so we will sketch only a few steps. The inequality 23 gives us E Y h g I Y Z I z,Y i 6 c |I | X a 1 ,b 1 ∈B i1 a 1 6 b 1 X a 2 ,b 2 ∈B i2 a 2 6 b 2 . . . X a l ∈B il Ka 1 E Y ” g i 1 Y Z a 1 ,b 1 — Ka 2 − b 1 E Y ” g i 2 Y Z a 2 ,b 2 — . . . . . . Ka l − b l −1 E Y ” g i l Y Z a l ,N — = c |I | X a 1 ,b 1 ∈B i1 a 1 6 b 1 X a 2 ,b 2 ∈B i2 a 2 6 b 2 . . . X a l ∈B il Ka 1 E Y ” g 1 Y Z a 1 −Li 1 −1,b 1 −Li 1 −1 — Ka 2 − b 1 . . . 43 . . . Ka l − b l −1 E Y ” g 1 Y Z a l −Lm−1,N−Lm−1 — . The terms with b i − a i ≥ ǫL are dealt with via Lemma 4.1, while for the remaining ones we just observe that E Y [g 1 Y Z a,b ] ≤ Pb − a ∈ τ since g 1 Y ≤ 1. One has then E Y h g I Y Z I z,Y i 6 c |I | X a 1 ,b 1 ∈B i1 a 1 6 b 1 X a 2 ,b 2 ∈B i2 a 2 6 b 2 . . . X a l ∈B il Ka 1 € δ + 1 {b 1 −a 1 6 ǫ L} Š Pb 1 − a 1 ∈ τ . . . Ka l − b l −1 € δ + 1 {N−a l 6 ǫ L} Š PN − a l ∈ τ. 44 From this point on, the proof of Theorem 3.2 is identical to the proof of Proposition 2.3 in [10] one needs of course to choose ǫ = ǫη and δ = δη sufficiently small. 4.1 Proof of Lemma 4.1 Let us fix a, b in B 1 , such that b − a ≥ ǫL. The small constants δ and ǫ are also fixed. We recall that for a fixed configuration of τ such that a, b ∈ τ, we have E Y W τ ∩ {a, . . . , b}, Y = 1 because z = 1. We can therefore introduce the probability measure always for fixed τ dP τ Y = W τ ∩ {a, . . . , b}, Y dP Y Y 45 where we do not indicate the dependence on a and b. Let us note for later convenience that, in the particular case a = 0, the definition 10 of W implies that for any function f Y E τ [ f Y ] = E X E Y f Y |X i = Y i ∀i ∈ τ ∩ {1, . . . , b} . 46 665 With the definition 20 of Z a,b := Z z=1 a,b , we get E Y ” g 1 Y Z a,b — = E Y E g 1 Y W τ ∩ {a, . . . , b}, Y 1 b ∈τ |a ∈ τ = b EE τ [g 1 Y ]Pb − a ∈ τ, 47 where b P · := P·|a, b ∈ τ, and therefore we have to show that bEE τ [g 1 Y ] 6 δ. With the definition 27 of g 1 Y , we get that for any K b EE τ [g 1 Y ] 6 ǫ K + b EP τ F 1 K . 48 If we choose K big enough, ǫ K is smaller than δ3 thanks to the Lemma 3.1. We now use two lemmas to deal with the second term. The idea is to first prove that E τ [F 1 ] is big with a b P −probability close to 1, and then that its variance is not too large. Lemma 4.2. For every ζ 0 and ǫ 0, one can find two constants u = uǫ, ζ 0 and L = L ǫ, ζ 0, such that for every a, b ∈ B 1 such that b − a ≥ ǫL, b P E τ [F 1 ] ≤ u p log L ≤ ζ, 49 for every L ≥ L . Choose ζ = δ3 and fix u 0 such that 49 holds for every L sufficiently large. If 2K = u p log L and therefore we can make ǫ K small enough by choosing L large, we get that b EP τ F 1 K 6 b EP τ F 1 − E τ [F 1 ] 6 − K + b P E τ [F 1 ] 6 2K 50 6 1 K 2 b EE τ ” F 1 − E τ [F 1 ] 2 — + δ3. 51 Putting this together with 48 and with our choice of K, we have b EE τ [g 1 Y ] 6 2δ3 + 4 u 2 log L b EE τ ” F 1 − E τ [F 1 ] 2 — 52 for L ≥ L . Then we just have to prove that b EE τ ” F 1 − E τ [F 1 ] 2 — = olog L. Indeed, Lemma 4.3. For every ǫ 0 there exists some constant c = cǫ 0 such that b EE τ ” F 1 − E τ [F 1 ] 2 — 6 c log L 3 4 53 for every L 1 and a, b ∈ B 1 such that b − a ≥ ǫL. We finally get that b EE τ [g 1 Y ] 6 2δ3 + clog L −14 , 54 and there exists a constant L 1 0 such that for L L 1 b EE τ [g 1 Y ] 6 δ. 55 666 4.2 Proof of Lemma 4.2 Up to now, the proof of Theorem 2.8 is quite similar to the proof of the main result in [10]. Starting from the present section, instead, new ideas and technical results are needed. Let us fix a realization of τ such that a, b ∈ τ so that it has a non-zero probability under bP and let us note τ ∩ {a, . . . b} = {τ R a = a, τ R a +1 , . . . , τ R b = b} recall that R n = |τ ∩ {1, . . . , n}|. We observe just go back to the definition of P τ that, if f is a function of the increments of Y in {τ n −1 + 1, . . . , τ n }, g of the increments in {τ m −1 + 1, . . . , τ m } with R a n 6= m ≤ R b , and if h is a function of the increments of Y not in {a + 1, . . . , b} then E τ f {∆ i } i ∈{τ n −1 +1,...,τ n } g {∆ i } i ∈{τ m −1 +1,...,τ m } h {∆ i } i ∈{a+1,...,b} 56 = E τ f {∆ i } i ∈{τ n −1 +1,...,τ n } E τ g {∆ i } i ∈{τ m −1 +1,...,τ m } E Y h {∆ i } i ∈{a+1,...,b} , and that E τ f {∆ i } i ∈{τ n −1 +1,...,τ n } = E X E Y f {∆ i } i ∈{τ n −1 +1,...,τ n } |X τ n −1 = Y τ n −1 , X τ n = Y τ n = E X E Y f {∆ i −τ n −1 } i ∈{τ n −1 +1,...,τ n } |X τ n −τ n −1 = Y τ n −τ n −1 . 57 We want to estimate E τ [F 1 ]: since the increments ∆ i for i ∈ B 1 \{a+1, . . . , b} are i.i.d. and centered like under P Y , we have E τ [F 1 ] := b X i, j=a+1 M i j E τ [−∆ i · ∆ j ]. 58 Via a time translation, one can always assume that a = 0 and we do so from now on. The key point is the following Lemma 4.4. 1. If there exists 1 ≤ n ≤ R b such that i, j ∈ {τ n −1 + 1, . . . , τ n }, then E τ [−∆ i · ∆ j ] = Ar r →∞ ∼ C X ,Y r 59 where r = τ n − τ n −1 in particular, note that the expectation depends only on r and C X ,Y is a positive constant which depends on P X , P Y ; 2. otherwise, E τ [−∆ i · ∆ j ] = 0. Proof of Lemma 4.4 Case 2. Assume that τ n −1 i ≤ τ n and τ m −1 j ≤ τ m with n 6= m. Thanks to 56-57 we have that E τ [∆ i · ∆ j ] = E X E Y [∆ i |X τ n −1 = Y τ n −1 , X τ n = Y τ n ] · E X E Y [∆ j |X τ m −1 = Y τ m −1 , X τ m = Y τ m ] 60 and both factors are immediately seen to be zero, since the laws of X and Y are assumed to be symmetric. Case 1. Without loss of generality, assume that n = 1, so we only have to compute E Y E X ” ∆ i · ∆ j X r = Y r — . 61 667 where r = τ 1 . Let us fix x ∈ Z 3 , and denote E Y r,x [·] = E Y [· Y r = x ]. E Y [∆ i · ∆ j Y r = x ] = E Y r,x h ∆ i · E Y r,x ” ∆ j ∆ i —i = E Y r,x ∆ i · x − ∆ i r − 1 = x r − 1 · E Y r,x ∆ i − 1 r − 1 E Y r,x h ∆ i 2 i = 1 r − 1 ‚ kxk 2 r − E Y r,x h ∆ 1 2 iŒ , where we used the fact that under P Y r,x the law of the increments {∆ i } i ≤r is exchangeable. Then, we get E τ [∆ i · ∆ j ] = E X E Y ” ∆ i · ∆ j 1 {Y r =X r } — P X −Y Y r = X r −1 = E X h E Y ” ∆ i · ∆ j Y r = X r — P Y Y r = X r i P X −Y Y r = X r −1 = 1 r − 1  E X   X r 2 r P Y Y r = X r   P X −Y Y r = X r −1 −E X E Y h ∆ 1 2 1 {Y r =X r } i P X −Y Y r = X r −1 = 1 r − 1  E X   X r 2 r P Y Y r = X r   P X −Y Y r = X r −1 − E X E Y h ∆ 1 2 Y r = X r i   . Next, we study the asymptotic behavior of Ar and we prove 59 with C X ,Y = t rΣ Y − t r € Σ −1 X + Σ −1 Y −1 Š . Note that t rΣ Y = E Y ||Y 1 || 2 = σ 2 Y . The fact that C X ,Y 0 is just a conse- quence of the fact that, if A and B are two positive-definite matrices, one has that A − B is positive definite if and only if B −1 − A −1 is [11, Cor. 7.7.4a]. To prove 59, it is enough to show that E X E Y h ∆ 1 2 Y r = X r i r →∞ → E X E Y h ∆ 1 2 i = σ 2 Y , 62 and that Br := E X k X r k 2 r P Y Y r = X r P X −Y X r = Y r r →∞ → t r € Σ −1 X + Σ −1 Y −1 Š . 63 To prove 62, write E X E Y h ∆ 1 2 Y r = X r i = E Y h ∆ 1 2 P X X r = Y r i P X −Y X r = Y r −1 = X y,z ∈Z d k yk 2 P Y Y 1 = y P Y Y r −1 = zP X X r = y + z P X −Y X r − Y r = 0 . 64 We know from the Local Limit Theorem Proposition 2.10 that the term P X X r = y+z P X −Y X r −Y r =0 is uniformly bounded from above, and so there exists a constant c 0 such that for all y ∈ Z d X z ∈Z d P Y Y r −1 = zP X X r = y + z P X −Y X r − Y r = 0 6 c. 65 668 If we can show that for every y fixed Z d the left-hand side of 65 goes to 1 as r goes to infinity, then from 64 and a dominated convergence argument we get that E X E Y h ∆ 1 2 Y r = X r i r →∞ −→ X y ∈Z d k yk 2 P Y Y 1 = y = σ 2 Y . 66 We use the Local Limit Theorem to get X z ∈Z d P Y Y r −1 = zP X X r = y + z = X z ∈Z d c X c Y r d e − 1 2r −1 z · Σ −1 Y z e − 1 2r y+z· Σ −1 X y+z + or −d2 = 1 + o1 X z ∈Z d c X c Y r d e − 1 2r z · Σ −1 Y z e − 1 2r z · Σ −1 X z + or −d2 67 where c X = 2π −d2 det Σ X −12 and similarly for c Y the constants are different in the case of simple random walks: see Remark 2.11, and where we used that y is fixed to neglect y p r. Using the same reasoning, we also have with the same constants c X and c Y P X −Y X r = Y r = X z ∈Z d P Y Y r = zP X X r = z = X z ∈Z d c X c Y r d e − 1 2r z · Σ −1 Y z e − 1 2r z · Σ −1 X z + or −d2 . 68 Putting this together with 67 and considering that P X −Y X r = Y r ∼ c X ,Y r −d2 , we have, for every y ∈ Z d X z ∈Z d P Y Y r −1 = zP X X r = y + z P X −Y X r − Y r = 0 r →∞ −→ 1. 69 To deal with the term Br in 63, we apply the Local Limit Theorem as in 68 to get E X   X r 2 r P Y Y r = X r   = c Y c X r d X z ∈Z d kzk 2 r e − 1 2r z · Σ −1 Y z e − 1 2r z · Σ −1 X z + or −d2 . 70 Together with 68, we finally get Br = c Y c X r d P z ∈Z d kzk 2 r e − 1 2r z · Σ −1 Y +Σ −1 X z + or −d2 c Y c X r d P z ∈Z d e − 1 2r z · Σ −1 Y +Σ −1 X z + or −d2 = 1 + o1E ” kN k 2 — , 71 where N ∼ N € 0, Σ −1 Y + Σ −1 X −1 Š is a centered Gaussian vector of covariance matrix Σ −1 Y + Σ −1 X −1 . Therefore, E ” kN k 2 — = t r € Σ −1 Y + Σ −1 X −1 Š and 63 is proven. Remark 4.5. For later purposes, we remark that with the same method one can prove that, for any given k ≥ 0 and polynomials U and V of order four so that E Y [|U € { ∆ k } k 6 k Š |] ∞ and E X [V ||X r || p r] ∞, we have E X E Y   U € { ∆ k } k 6 k Š V X r p r Y r = X r   r →∞ → E Y U € {k∆ k k} k 6 k Š E V kN k , 72 669 where N is as in 71. Let us quickly sketch the proof: as in 64, we can write E X E Y – U € {k∆ k k} k 6 k Š V kX r k p r Y r = X r ™ = 73 X y 1 ,..., y k0 ∈Z d U € {k y k k} k 6 k Š X z ∈Z d V kzk p r P X X r = z P Y Y r −k = z − y 1 − . . . − y k P X −Y X r − Y r = 0 ×P Y ∆ i = y i , i ≤ k . Using the Local Limit Theorem the same way as in 68 and 71, one can show that for any y 1 , . . . , y k X z ∈Z d V kzk p r P X X r = z P Y Y r −k = z − y 1 − . . . − y k P X −Y X r − Y r = 0 r →∞ → E V kN k . 74 The proof of 72 is concluded via a domination argument as for 62, which is provided by uniform bounds on P Y Y r −k = z − y 1 − . . . − y k and P X −Y X r − Y r = 0 and by the fact that the increments of X and Y have finite fourth moments. Given Lemma 4.4, we can resume the proof of Lemma 4.2, and lower bound the average E τ [F 1 ]. Recalling 58 and the fact that we reduced to the case a = 0, we get E τ [F 1 ] = R b X n=1    X τ n −1 i, j≤τ n M i j    A∆τ n , 75 where ∆ τ n := τ n − τ n −1 . Using the definition 29 of M , we see that there exists a constant c such that for 1 m ≤ L m X i, j=1 M i j ≥ c p L log L m 3 2 . 76 On the other hand, thanks to Lemma 4.4, there exists some r 0 and two constants c and c ′ such that Ar ≥ c r for r ≥ r , and Ar ≥ −c ′ for every r. Plugging this into 75, one gets p L log L E τ [F 1 ] ≥ c R b X n=1 p ∆τ n 1 {∆τ n ≥r } − c ′ R b X n=1 ∆τ n 3 2 1 {∆τ n 6 r } ≥ c R b X n=1 p ∆τ n − c ′ R b . 77 Therefore, we get for any positive B 0 independent of L b P E τ [F 1 ] 6 g p log L 6 b P   1 p L log L c R b X n=1 p ∆τ n − c ′ R b 6 u p log L   6 b P   1 p L log L c R b X n=1 p ∆τ n − c ′ p LB 6 u p log L   + bP € R b B p L Š 6 b P    R b 2 X n=1 p ∆τ n ≤ 1 + o1 u c p L log L    + b PR b B p L. 78 670 Now we show that for B large enough, and L ≥ L B, b PR b B p L 6 ζ2, 79 where ζ is the constant which appears in the statement of Lemma 4.2. We start with getting rid of the conditioning in b P recall b P · = P·|b ∈ τ since we reduced to the case a = 0. If R b B p L, then either |τ ∩ {1, . . . , b2}| or |τ ∩ {b2 + 1, . . . , b}| exceeds B 2 p L. Since both random variables have the same law under b P, we have b PR b B p L 6 2b P R b 2 B 2 p L ≤ 2cP R b 2 B 2 p L , 80 where in the second inequality we applied Lemma A.1. Now, we can use the Lemma A.3 in the Appendix, to get that recall b ≤ L P R b 2 B 2 p L ≤ P R L 2 B 2 p L L →∞ → P |Z | p 2 π ≥ B c K p 2 , 81 with Z a standard Gaussian random variable and c K the constant such that Kn ∼ c K n −32 . The inequality 79 then follows for B sufficiently large, and L ≥ L B. We are left to prove that for L large enough and u small enough b P    R b 2 X n=1 p ∆τ n 6 u c p L log L    6 ζ2. 82 The conditioning in b P can be eliminated again via Lemma A.1. Next, one notes that for any given A 0 independent of L P    R b 2 X n=1 p ∆τ n 6 u c p L log L    6 P    A p L X n=1 p ∆τ n 6 u c p L log L    + P € R b 2 A p L Š . 83 Thanks to the Lemma A.3 in Appendix and to b ≥ ǫL, we have lim sup L →∞ P R b 2 p L A ≤ P |Z | p 2 π Ac K r 2 ǫ , which can be arbitrarily small if A = A ǫ is small enough, for L large. We now deal with the other term in 83, using the exponential Bienaymé-Chebyshev inequality and the fact that the ∆ τ n are i.i.d.: P    1 p L log L A p L X n=1 p ∆τ n u c p log L    6 e uc p log L E – exp ‚ − r τ 1 L log L Œ™ A p L . 84 To estimate this expression, we remark that, for L large enough, E – 1 − exp ‚ − r τ 1 L log L Œ™ = ∞ X n=1 Kn  1 − e − Æ n L log L ‹ ≥ c ′ ∞ X n=1 1 − e − Æ n L log L n 3 2 ≥ c ′′ r log L L , 85 671 where the last inequality follows from keeping only the terms with n ≤ L in the sum, and noting that in this range 1 − e − Æ n L log L ≥ c p n L log L. Therefore, E – exp ‚ − r τ 1 L log L Œ™ A p L 6 1 − c ′′ r log L L A p L ≤ e −c ′′ A p log L , 86 and, plugging this bound in the inequality 84, we get P    1 p L log L A p L X n=1 p ∆τ n 6 u c p log L    6 e [uc−c ′′ A] p log L , 87 that goes to 0 if L → ∞, provided that u is small enough. This concludes the proof of Lemma 4.2. 4.3 Proof of Lemma 4.3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52