Distance Bounds getdoc524d. 128KB Jun 04 2011 12:04:23 AM

350 Electronic Communications in Probability Definition 1.2. Let G be a group with finite symmetric generating set U. The mixer chain on G with respect to U is the random walk on the group G ⋉ Σ with respect to uniform measure on the generating set Υ = {u, id, e, e, u : u ∈ U}. An equivalent way of viewing this chain is viewing the state g, σ ∈ G ⋉ Σ as follows: The first coordinate corresponds to the position of the mixer on G. The second coordinate corresponds to the placing of the different tiles, so the tile marked x is placed on the vertex σx. By Definition 1.2, the mixer chooses uniformly an adjacent vertex of G, say h. Then, with probability 1 2 the mixer swaps the tiles on h and g, and with probability 1 2 it moves to h. The identity element in G ⋉ Σ is e, id, so the mixer starts at e with all tiles on their corresponding vertices the identity permutation.

1.3 Distance Bounds

In this section we show that the distance of an element in G ⋉ Σ to e, id is essentially governed by the sum of the distances of each individual tile to its origin. Let g, σ ∈ G ⋉ Σ. Let γ = γ , γ 1 , . . . , γ n be a finite path in G. We say that the path γ covers σ if supp σ ⊂ γ , γ 1 , . . . , γ n . The covering number of g and σ, denoted Covg, σ, is the minimal length of a path γ, starting at g, that covers σ; i.e. Covg, σ = min |γ| : γ = g and γ is a path covering σ . To simplify notation, we denote D = d G⋉Σ,Υ . Proposition 1.3. Let g, σ ∈ G ⋉ Σ. Then, Dg, σ, g, id ≤ 2Covg, σ + 5 X h ∈suppσ dh, σh. Proof. The proof of the proposition is by induction on the size of supp σ. If |suppσ| = 0, then σ = id so the proposition holds. Assume that |suppσ| 0. Let n = Covg, σ, and let γ be a path in G such that |γ| = n, γ = g and γ covers σ. Write σ = c 1 c 2 · · · c k , where the c j ’s are cyclic permutations with pairwise disjoint non-empty supports, and supp σ = k [ j=1 suppc j . Let j = min m ≥ 0 : γ m ∈ suppσ . So, there is a unique 1 ≤ ℓ ≤ k such that γ j ∈ suppc ℓ . Let τ = c −1 ℓ σ. Thus, supp τ = [ j 6=ℓ suppc j , and specifically, |suppτ| |suppσ|. Note that h ∈ suppγ −1 j c ℓ γ j if and only if γ j h ∈ suppc ℓ , and specifically, e ∈ suppγ −1 j c ℓ γ j . γ −1 j c ℓ γ j is a cyclic permutation, so by Proposition 1.1, we know that D γ j , σ, γ j , τ = Dγ j , τe, γ −1 j c ℓ γ j , γ j , τ = De, γ −1 j c ℓ γ j , e, id ≤ 5 X h ∈suppc ℓ d γ −1 j h, γ −1 j c ℓ h = 5 X h ∈suppc ℓ dh, σh. 1.3 Rate of Escape of the Mixer Chain 351 By induction, D γ j , τ, γ j , id ≤ 2Covγ j , τ + 5 X h ∈suppτ dh, τh. 1.4 Let β be the path γ j , γ j+1 , . . . , γ n . Since γ j is the first element in γ that is in suppσ, we get that supp τ ⊂ suppσ ⊆ ¦ γ j , γ j+1 , . . . , γ n © , which implies that β is a path of length n − j that covers τ, so Covγ j , τ ≤ n − j. Combining 1.3 and 1.4 we get, Dg, σ, g, id ≤ Dγ , σ, γ j , σ + Dγ j , σ, γ j , τ + Dγ j , τ, γ j , id + D γ j , id, γ , id ≤ j + 5 X h ∈suppc ℓ dh, σh + 5 X h ∈suppτ dh, σh + 2n − j + j = 2Covg, σ + 5 X h ∈suppσ dh, σh. ⊓ ⊔ Proposition 1.4. Let g, σ ∈ G ⋉ Σ and let g ′ ∈ G. Then, Dg, σ, g ′ , id ≥ 1 2 X h ∈suppσ dh, σh. Proof. The proof is by induction on D = Dg, σ, g ′ , id. If D = 0 then σ = id, and we are done. Assume that D 0. Let υ ∈ Υ be a generator such that Dg, συ, g ′ , id = D − 1. There exists u ∈ U such that either υ = u, id or υ = e, e, u . If υ = u, id then by induction D ≥ Dg, συ, g ′ , id ≥ 1 2 X h ∈suppσ dh, σh. So assume that υ = e, e, u . If σh 6∈ g, gu , then g, gu σh = σh, and supp σ \ ¦ σ −1 g, σ −1 gu © = supp g, gu σ \ ¦ σ −1 g, σ −1 gu © . Since dg, gu = 1, X h ∈suppσ dh, σh = dg, σ −1 g + dgu, σ −1 gu + X h 6∈ { σ −1 g,σ −1 gu } dh, σh ≤ dg, gu + dgu, σ −1 g + dgu, g + dg, σ −1 gu + X h 6∈ { σ −1 g,σ −1 gu } dh, g, gu σh ≤ 2 + X h ∈suppg,guσ dh, g, gu σh. So by induction, D = 1 + Dg, g, gu σ, g ′ , id ≥ 1 + 1 2 X h ∈suppg,guσ dh, g, gu σh ≥ 1 2 X h ∈suppσ dh, σh. ⊓ ⊔ 352 Electronic Communications in Probability 2 The Mixer Chain on Z We now consider the mixer chain on Z, with {1, −1} as the symmetric generating set. We denote by ω t = S t , σ t t ≥0 the mixer chain on Z. For ω ∈ Z ⋉ Σ we denote by Dω the distance of ω from 0, id with respect to the generating set Υ, see Definition 1.2. Denote by D t = Dω t the distance of the chain at time t from the origin. As stated above, we show that the mixer chain on Z has degree of escape 3 4. In fact, we prove slightly stronger bounds on the distance to the origin at time t. Theorem 2.1. Let D t be the distance to the origin of the mixer chain on Z. Then, there exist constants c, C 0 such that for all t ≥ 0, ct 3 4 ≤ E[D t ] ≤ C t 3 4 . The proof of Theorem 2.1 is in Section 3. For z ∈ Z, denote by X t z = |σ t z − z|, the distance of the tile marked z to its origin at time t. Define X t = X z ∈Z X t z, which is a finite sum for any given t. As shown in Propositions 1.3 and 1.4, X t approximates D t up to certain factors. For z ∈ Z define V t z = t X j=0 1 S t = σ t z . V t z is the number of times that the mixer visits the tile marked z, up to time t.

2.1 Distribution of X

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52