Proof of Theorem 1.2 An interpretation of Theorem 1.2 in terms of Bessel processes

400 Electronic Communications in Probability Limit results such as 1.12 and 1.15 are not standard in Probability theory: they have been the starting point for the authors of [13] to build a little theory for such limit theorems which also appear in number theory in particular a probabilistic interpretation of the arithmetic factor 1.5 is given in [13]. The rest of the paper is organized as follows: • in Section 2, we prove Theorems 1.2, 1.3 and 1.4. We also give an interpretation of Theorem 1.2 in terms of Bessel processes as well as an important Lévy-Khintchine type representation for 1 G 1 + z. • in Section 3, we shall introduce generalized gamma convolution variables and prove Theo- rem 1.6 as a natural extension of Theorem 1.2. 2 Proofs of Theorems 1.2, 1.3 and 1.4 and additional proba- bilistic aspects of the Barnes G-function

2.1 Proof of Theorem 1.2 and interpretation in terms of Bessel processes

2.1.1 Proof of Theorem 1.2

The proof of Theorem 1.2 is rather straightforward. We simply use the fact that for Rez −1 E • exp  −z γ n n ‹˜ = 1  1 + z n ‹ n . Hence, the quantity E  exp −z N X n=1  γ n n ‹ − N   equals 1 Q N n=1  1 + z n ‹ n exp −z ‹ ≡ 1 D N . We then write D N exp ‚ z 2 2 log N Œ = D N exp z 2 2 N X n=1 1 n exp z 2 2 log N − N X n=1 1 n which from 1.1 converges, as N → ∞, towards G 1 + z 2 π −z2 exp ‚ z + z 2 2 Œ , which proves formula 1.9. Barnes G-function and generalized Gamma variables 401

2.1.2 An interpretation of Theorem 1.2 in terms of Bessel processes

Let R 2n t t≥0 denote a BES2n process, starting from 0, with dimension 2n; we need to con- sider the sequence R 2n n=1,2,... of such independent processes. It is well known see [19] for example that: R 2 2n t law = 2t γ n . Thus for fixed t 0, N X n=1 R 2 2n t 2n law = t N X n=1 γ n n . Moreover, the process R 2 2n t , t ≥ 0 satisfies the following stochastic differential equation, driven by a Brownian Motion β n : for fixed t 0, R 2 2n t = 2 Z t Æ R 2 2n sdβ n s + 2nt. 2.1 We now write Theorem 1.2, for Rez −1t as lim N →∞ 1 N t2 z2 2 E  exp −z N X n=1 R 2 2n t − 2nt 2n   = ‚ A tz exp ‚ t 2 z 2 2 Œ G 1 + tz Œ −1 2.2 where A = Ç e 2 π . We now wish to write the LHS of 2.2 in terms of functional of a sum of squared Ornstein- Uhlenbeck processes; indeed, if we write, from 2.1: N X n=1 R 2 2n t − 2nt 2n = 2 N X n=1 Z t 1 2n Æ R 2 2n sdβ n s , the RHS appears as a martingale in t, with increasing process N X n=1 Z t 1 n 2 R 2 2n s ds, and we obtain that 2.2 may be written as lim N →∞ 1 N t2 z2 2 E z  exp z 2 2 N X n=1 Z t 1 n 2 R 2 2n s ds   = ‚ A tz exp ‚ t 2 z 2 2 Œ G 1 + tz Œ −1 where, assuming now z to be a real number, under P z the process € R 2 2n t Š t≥0 satisfies, by Girsanov’s theorem: R 2 2n t = 2 Z t Æ R 2 2n s  d e β n s − z n Æ R 2 2n sds ‹ + 2nt = 2 Z t Æ R 2 2n sd e β n s − 2z n Z t R 2 2n s ds + 2nt. That is, under P z , € R 2 2n t Š t≥0 now appears as the square of the norm of a 2n-dimensional Ornstein-Uhlenbeck process, with parameter  − z n ‹ . 402 Electronic Communications in Probability

2.2 Proof of Theorem 1.3

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52