Gaussian concentration - Lower bound

Remark 3.3. Note that to obtain the non-asymptotic bounds of the Monte Carlo procedure 3.5, we successively used the concentration properties of the reference measure γ, the control of the distance W 1 µ, γ given by the variational formulation of the entropy see Lemma 3.1 and the tensorization property of the functional inequality satisfied by γ. The same arguments can therefore be applied to a reference measure γ satisfying a Poincaré inequality.

3.2 Gaussian concentration - Lower bound

Concerning the previous deviation rate of Proposition 3.2, a natural question consists in understand- ing whether it is sharp or not. Namely, for a given function f satisfying suitable growth conditions at infinity, otherwise we cannot see the asymptotic growth, do we have a lower bound of the same order, i.e. with Gaussian decay at infinity? The next proposition gives a positive answer to that question. Proposition 3.3. Let f : R d → R + be a Lipschitz continuous function satisfying ∇f ∞ ¶ 1 and assumption G ρ , β for given ρ , β 0. For a C 2 function V on R d such that e −V is integrable with respect to λ d and s.t. ∃¯λ ¾ 1, ¯λI d ×d ¾ HessV ¾ 0, let γdx = e −V x Z −1 dx be the associated Gibbs probability measure. We assume that ∃κ ¾ 1 s.t. for |x| ¾ ρ the measures µdx = mxdx and γdx satisfy mx ¾ κ −1 e −V x Z −1 . Let ¯ Λ := ¯ λ 2 + sup s ∈Sd−1 |V sρ | ρ 2 + sup s ∈Sd−1 |∇V sρ | ρ . We have ∀r 0, P µ f Y − µ f ¾ r − W 1 µ, γ + δ f , γ ¾    Kd ,A Z ¯ Λ d 2 κ exp −¯ Λ h r β ∨ ρ i 2 , d even, arccos θ −12 Kd,A Z ¯ Λ d 2 κ exp −θ ¯ Λ h r β ∨ ρ i 2 , ∀θ 1, d odd, with δ f , γ = γ f + βρ − f , f := inf s ∈S d −1 f s ρ , and Kd, A defined in 2.6 where A ⊂ S d −1 appears in G ρ , β . Proof. Set E := {Y ∈ A × [ρ , ∞}. Here we use the convention that for d = 1, A × [ρ , + ∞ ⊂ −∞, −ρ ] ∪ [ρ , + ∞. Write now P µ f Y − µ f ¾ r − W 1 µ, γ + δ f , γ ¾ P µ f Y − µ f ¾ r − W 1 µ, γ + δ f , γ, E ¾ κ −1 P γ h f Y ¾ r − βρ + f , E i := κ −1 P . 3.6 Denoting Y = ρ π S d −1 Y , we have P ¾ P γ h f Y + f Y − f Y ¾ r − βρ + f , E i , G ρ0,β ¾ P γ h β|Y − Y | ¾ r − βρ + f − f Y , E i ¾ P γ |Y | ¾ r − βρ β + |Y |, E ¾ P γ |Y | ¾ r β ∨ ρ , π S d −1 Y ∈ A . 3.7 1656 Write P ¾ Z A σds Z +∞ ρ ∨ r β d ρρ d −1 exp −V sρZ −1 , where σds stands for the Lebesgue measure of S d −1 . Now, HessV ¶ ¯ λI d ×d yields ∀ρ ¾ ρ ∨ r β , |V sρ|ρ 2 ¶ ¯ Λ, ¯ Λ := ¯ λ 2 + sup s ∈Sd−1 |V sρ | ρ 2 + sup s ∈Sd−1 |∇V sρ | ρ and therefore P ¾ |A| Z +∞ ρ ∨ r β d ρρ d −1 exp −¯ Λρ 2 Z −1 ¾ |A| Z 2 ¯ Λ d 2 Z +∞ ρ ∨ r β 2 ¯ Λ 1 2 d ρρ d −1 exp − ρ 2 2 = |A| Z 2 ¯ Λ d 2 Q d ρ ∨ r β 2 ¯ Λ 1 2 . 3.8 We now have the following explicit expression: ∀x 0, Q d x := exp− x 2 2 M d, x, M d , x :=            d 2 −1 X i= x 2i d 2 −1 Y j=i+ 1 2 j, d even, d −1 2 −1 X i= x 2i+1 d −1 2 −1 Y j=i+ 1 2 j + 1 + d −1 2 −1 Y j= 2 j + 1 exp x 2 2 Z +∞ x exp − ρ 2 2 dρ, d odd, with the convention that P −1 i= = 0, ∀k ∈ N, Q k −1 j=k j = 1. Observe now that R ∞ x exp −ρ 2 2dρ = 2π 1 2 P [N 0, 1 ¾ x] ¾ 2π 1 2 P [Y ∈ K , |Y | ¾ x cos ˜ θ ] := 2π 1 2 Qx, where Y ∼ N 0 2 ×1 , I 2 ×2 is a standard bidimensional Gaussian vec- tor and K := {z ∈ R 2 , 〈z, e 1 〉 ¾ cos ˜ θ |z|}, ˜ θ ∈ 0, π 2 , e 1 = 1, 0. Since Qx = ˜ θ π exp − x 2 2 cos 2 ˜ θ , we derive that Q d x ¾    2 d 2−1 d2 − 1 exp− x 2 2 , d even, ˜ θ 2 d 2 π 1 2 Q d −1 2 j= 1 j − 1 2 exp− x 2 2 cos 2 ˜ θ , d odd, which plugged into 3.8 yields: P ¾    Kd ,A Z ¯ Λ d 2 exp −¯ Λ h r β ∨ ρ i 2 , d even, ˜ θ Kd,A Z ¯ Λ d 2 exp − ¯ Λ cos 2 ˜ θ h r β ∨ ρ i 2 , d odd. Corollary 3.2. Under the assumptions of Proposition 3.3, let Y 1 , · · · , Y M be i.i.d. R d -valued random variables with law µ. We have ∀r 0, ∀M ¾ 1, P   1 M M X k= 1 f Y k − E µ ” f Y 1 — ¾ r − W 1 µ, γ + δ f , γ   ¾ 2 exp ‚ −Mθ ¯ Λ + χ r β ∨ ρ 2 Œ 1657 where χ = 1 ρ 2 log Z ¯ Λ d 2 κ Kd ,A + , θ = 1 for d even, and χ = 1 ρ 2 log Z ¯ Λ d 2 κ Kd ,A arccos θ −12 + , θ ∈ 1, +∞ for d odd, and with Kd , A defined in 2.6. Proof. We only consider d even. By independence of the Y k k ∈[[1,M]] , exploiting T M k= 1 { f Y k − E µ ” f Y 1 — ¾ r − W 1 µ, γ + δ f , γ} ⊂ { 1 M P M k= 1 f Y k − E µ ” f Y 1 — ¾ r − W 1 µ, γ + δ f , γ}, we have P 1 M M X k= 1 f Y k −E µ ” f Y 1 — ¾ r −W 1 µ, γ+δ f , γ ¾ Kd , A Z ¯ Λ d 2 κ M exp ‚ −M ¯ Λ r β ∨ ρ 2 Œ . For χ = 1 ρ 2 log Z ¯ Λ d 2 κ Kd ,A + , we thus obtain P   1 M M X k= 1 f Y k − E µ ” f Y 1 — ¾ r − W 1 µ, γ + δ f , γ   ¾ exp ‚ −M¯ Λ + χ r β ∨ ρ 2 Œ , which completes the proof. .

3.3 Proofs of Theorem 2.2 and Corollary 2.1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52