Simple random walks on trees

Recurrence for branching Markov chains 597 Remark 3.21. The sufficient condition in Proposition 3.20 is not necessary for strong recurrence in general. Consider the following tree T that is a combination of T 3 and Z : Let r be the root with degree 2. The tree T is defined such that d e gx = 3 for all x such that dr, x ∈ ” 2 2k , 2 2k+1 − 1 — and d e gx = 2 for all x such that dr, x ∈ ” 2 2k+1 , 2 2k+2 − 1 — for k ≥ 0. We have ρT = 1, ˇ ρT = ρT 3 = 2 p 2 3 1 and that the BRW T, µ is strongly recurrent for all m 1. To see the latter observe that for all m 1 there exists some k such that p k Z 0, 0 · m k 1, where P Z is the transition kernel of the SRW on Z. Thus each part of Z of length k constitutes a seed and we conclude with Lemma 3.4.

3.3.3 Simple random walks on trees

Let T be a tree of degree bounded by M ∈ N and denote P T for the transition matrix of the SRW on T and P T M for the transition matrix for the SRW on T M , the M -regular tree. We consider T to be an infinite subtree of T M . One shows by induction on n : Lemma 3.22. p n T x, y ≥ p n T M x, y ∀x, y ∈ T ∀n ∈ N. Since the spectral radius of the SRW on T M is ρT M = 2 p M −1 M , compare with Example 2.17, we immediately obtain a lower bound for the spectral radius of SRW on trees with bounded degrees. Lemma 3.23. Let T be a tree with degrees bounded by M . Then the simple random walk on T satisfies ρT ≥ 2 p M − 1 M . We obtain the following Corollary of Lemma 3.23 and Proposition 3.20. Corollary 3.24. Let T be a tree with maximal degree M . The BRW T, µ with constant offspring distribution is strongly recurrent if m 2 p M −1 M . Remark 3.25. Observe that Lemma 3.23 does hold for general graphs with degrees bounded by M , compare with Theorem 11.1 in [29]. Therefore, Corollary 3.24 does hold true for graphs with degrees bounded by M as well. We conclude this chapter with an interesting and illustrative example, gathered from [29] Chap- ter 9, where we can give a complete classification in transience, recurrence and strong recurrence. Example 3.26. We construct a graph that looks like a rooted M - ary tree with a hair of length 2 at the root. Let G 1 be the tree where each vertex has degree M 1, with the exception of the root o, which has degree M − 1. As G 2 we choose the finite path [0, 1, 2]. The graph G is obtained by identifying 0 with o, com- pare with Subsection 3.3.1. The SRW on G is obtained by setting α 1 = M −1 M and α 2 = 1 M , compare with Equation 3.6. Let us first consider the case where M ≥ 5. One calculates the spectral radius of the SRW on G : ρG = r M − 1 2M − 2 . seed 598 Electronic Communications in Probability Recall that ̺G = min{ρG 1 , ρG 2 }. Due to Lemma 3.23 we have ̺G ≥ 2 p M −1 M . Since ρG 1 = 2 p M −1 M we have ̺G = 2 p M −1 M . Notice that ̺G = e ρG = ˇ ρG. Now, Theorem 2.12, Lemma 3.12 and the proof of Theorem 3.14 yields i m ≤ 1ρG =⇒ G, µ is transient, ii 1 ρG m ≤ 1̺G =⇒ G, µ is recurrent, iii m 1̺G =⇒ G, µ is strongly recurrent. Observe that in this example the graph G 2 can be seen as a seed that makes the BRW recurrent. The first critical value 1 ρG is such that the G 2 becomes a seed, where the second critical value 1 ̺G is such that the branching compensates the drift induced by the graph G 1 . Furthermore, notice that for M = 3, 4 the spectral radius of G is ρG = 2 p M −1 M and recurrence and strong recurrence coincide. Thus in this case, the branching which is necessary to produce a seed in G 2 must be at least as high as the branching that is needed to compensate the drift of the SRW on G 1 .

3.4 Outlook

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52