Penentuan Sektor Unggulan Indentifikasi Penciri Utama

3. Penentuan Sektor Unggulan

Beberapa kriteria yang digunakan di dalam menentukan sektor unggulan di Jawa Timur, antara lain sebagai berikut : 1. Mampu memberikan pengaruh yang besar terhadap perekonomian di Jawa Timur serta meningkatkan daya beli masyarakat, variabel-variabel yang digunakan adalah angka pengganda PDRB, angka pengganda pajak, angka pengganda pendapatan, dan angka pengganda tenaga kerja. 2. Berbasis sumber daya lokal yang besar domestic resources, variabel yang digunakan adalah koefisien impor. 3. Untuk menjamin keberlanjutan pembangunan dalam jangka panjang, maka sektor- sektor yang yang dipilih adalah sektor-sektor dengan sifat sumber daya yang terbaharukan renewable. 4. Dari segi permintaan besar dan semakin kuat, variabel yang digunakan adalah keterkaitan ke depan. 5. Mampu menggerakkan output sektor-sektor lainnya, variabel yang digunakan adalah keterkaitan ke belakang. VARIABEL PENENTU PRINCIPAL COMPONENT ANALYSIS FACTOR SCORE FACTOR LOADING EIGENVALUE SEBAGAI FAKTOR PEMBOBOT SKOR = α α α α α λ λ F ∑ ∑ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ - Pengganda PDRB - Pengganda pajak - Pengganda pendapatan - Pengganda tenaga kerja - Koefisien impor - Keterkaitan ke depan - Keterkaitan ke belakang - Renewable Keterangan : λ α = Eigenvalue akar ciri faktor komponen utama ke-n F α = Faktor skor sektor ke 1, 2, 3, ....., 44 Gambar 12 Bagan alir penentuan sektor unggulan. Variabel-variabel tersebut di atas kemudian dianalisis dengan menggunakan metode PCA untuk mendapatkan akar ciri eigenvalues dari masing-masing faktor komponen utama factor loading sebagai faktor pembobot. Faktor skor dari masing- masing faktor komponen utama kemudian dikalikan dengan nilai pembobot sehingga didapat skor masing-masing sektor. Bagan alir penentuan sektor unggulan sebagaimana ditunjukkan pada Gambar 12.

4. Indentifikasi Penciri Utama

Principal Components Analysis Salah satu tujuan dasar dari penggunaan metode Indentifikasi Penciri Utama PCA, adalah : a. Ortogonalisasi variabel, yaitu mentransformasikan suatu struktur data dengan variabel-variabel yang saling berkorelasi menjadi struktur baru dengan variabel- variabel baru Komponen Utama atau Faktor yang tidak saling berkorelasi. b. Penyederhanaan variabel, banyaknya variabel baru yang dihasilkan jauh lebih sedikit daripada variabel asalnya, tetapi total kandungan informasinya total ragamnya relatif tidak berubah. Saefulhakim 2004a, menyatakan bahwa Indentifikasi Penciri Utama PCA dengan menggunakan berbagai data dari hasil analisis pada tabel I-O dapat digunakan untuk melihat : 1. struktur hubungan antar berbagai karakteristik pola keterkaitan 2. struktur hubungan antar berbagai karakteristik pola dampak multiplier 3. struktur hubungan antar berbagai karakteristik pola keterkaitan dan pola dampak multiplier 4. pengelompokan sektor-sektor berdasarkan pola keterkaitan dan pola dampak yang relatif sama 5. pendefinisian fungsi batas pembeda antar kelompok-kelompok sektor Algoritma ortogonalisasi dengan PCA adalah mencari variabel baru Z yang merupakan kombinasi linear dari variabel-variabel baku Y yang ragamnya paling tinggi. Artinya, informasi yang terkandung dalam variabel-variabel Y semaksimal mungkin terserap dalam variabel baru Z tersebut. Karena Z = Yb, maka yang dicari adalah vektor koefisien pembobot b. Karena banyak sekali kemungkinan vektor b yang dapat dimaksimumkan ragam Z, maka yang dibatasi hanya vektor b yang bersifat baku, yakni b’b=1 . Secara matematis, algoritma PCA adalah sebagai berikut : Max Z’Z = b’Y’Yb ........................... 32 s.t b’b = 1 .......................... 33 L = b’Y’Yb – λb’b-1, syarat perlu untuk mendapatkan solusi adalah : b L ∂ ∂ = 2Y’Yb – 2 λ = 0 .......................... 34 Y’Yb = λb atau Rb = λb .......................... 35 Keterangan : λ : eigenvalue atau akar ciri dari matriks korelasi antar varibel asal b : eigenvector untuk Faktor atau Komponen Utama dari matriks korelasi antar variabel asal R : jumlah variabel yang dianalisis Peubah-peubah yang digunakan di dalam Analisis Komponen Utama PCA merupakan data yang berasal dari hasil analisis Input Output, antara lain: 1 keterkaitan langsung ke belakang SDBL, 2 keterkaitan langsung dan tidak langsung ke belakang SDIBL, 3 keterkaitan langsung ke depan SDFL, 4 keterkaitan langsung dan tidak langsung ke depan SDIFL, 5 angka pengganda pendapatan Inc-M, 6 angka pengganda surplus usaha, 7 angka pengganda penyusutan, 8 angka pengganda pajak T-M, 9 angka pengganda impor M-M, dan 10 angka pengganda PDRB. 5 . Location Quotient LQ Location Quotient LQ adalah suatu perbandingan tentang besarnya peranan suatu sektorindustri di suatu daerah terhadap besarnya peranan sektorindustri tersebut secara keseluruhan nasional, provinsi, daerah, dll. Secara umum, metode analisis ini digunakan untuk menunjukkan lokasi pemusatanbasis aktivitas. Di samping itu, LQ juga bisa digunakan untuk mengetahui kapasitas ekspor perekonomian suatu wilayah serta tingkat kecukupan barangjasa dari produksi lokal suatu wilayah Saefulhakim 2004a. Sedangkan Warpani 1984, menyatakan bahwa teknik LQ merupakan cara permulaan untuk mengetahui kemampuan suatu daerah dalam sektor kegiatan tertentu. Asumsi yang digunakan dalam analisis ini adalah bahwa 1 kondisi geografis relatif seragam, 2 pola-pola aktivitas bersifat seragam, dan 3 setiap aktivitas menghasilkan produk yang sama. Persamaan dari LQ ini adalah : IJ IJ I J LQ X X X X = . . .. ……………….. 36 Keterangan : X ij : derajat sektor ke-j di kabupatenkota ke-i X i. : total sektor di kabupatenkota ke-i X .j : total sektor ke-j pada semua kabupatenkota di Jawa Timur X .. : derajat sektor pada total wilayah kabupatenkota di Jawa Timur Data yang digunakan pada analisis Location Quotient LQ adalah PDRB Menurut Harga Konstan Tahun 2003 pada seluruh kabupatenkota di Jawa Timur. Hasil interprestasi dari analisis LQ, adalah sebagai berikut : a. Jika nilai LQ ij 1, maka hal ini menunjukkan terjadinya konsentrasi suatu aktivitas di sub wilayah ke-i secara relatif dibandingkan dengan total wilayah atau terjadi pemusatan aktivitas di sub wilayah ke-i. b. Jika nilai LQ ij = 1, maka sub wilayah ke-i tersebut mempunyai pangsa aktivitas setara dengan pangsa total atau konsentrasai aktivitas di wilayah ke-i sama dengan rata-rata total wilayah. c. Jika nilai LQ ij 1, maka sub wilayah ke-i tersebut mempunyai pangsa relatif lebih kecil dibandingkan dengan aktivitas yang secara umum ditemukan di seluruh wilayah.

6. Shift-Share Analysis