Improvement of Theorem 1.1 and Proof of Theorem 1.2

First Eigenvalue of One-dimensional Diffusion Processes 235 Theorem 1.3. For transient diffusion operators L on the half line R + , λ iff δ T ∞. Furthermore, define λ 0,T = inf{D f : f ∈ C ∞ R + , k f k = 1}. 1.8 We have 4δ T −1 ≤ λ 0,T ≤ δ −1 T . 1.9 The absence of the condition f 0 = 0 in the definition 1.8 indicates that λ 0,T is in fact the first Neumann eigenvalue of transient diffusion operator L on R + ; the proof of this equivalence being deferred to Section 2.2. As an alternative probabilistic viewpoint c.f. see [7; Proposition 1.1], λ 0,T is the rate of the exponential decay of transient diffusion process, and it is the largest ǫ such that kP t f k ≤ k f ke −ǫ t for all f ∈ C ∞ R + . Theorem 1.3 establishes the relationships among the dual Hardy inequality 1.7, the first Dirichlet eigenvalue λ and the first eigenvalue λ 0,T of transient diffusion operators. As a byproduct, Theorem 1.3 implies that λ 0 iff λ 0,T 0, though it is true on general grounds that λ ≥ λ 0,T . The proofs of our theorems are presented in the next section. Here, Chen’s variational formulas c.f. [4, 5, 6] for the first eigenvalue of ergodic diffusion processes are reviewed. We also use them to improve Theorem 1.1. Although we restrict ourselves on the half line in this paper, the corresponding results for the whole line, higher-dimensional situations and Riemannian manifolds follow from similar ideas in [17, 5, 6]. 2 Proofs

2.1 Improvement of Theorem 1.1 and Proof of Theorem 1.2

We begin with the proof of Theorem 1.2. Proof of Theorem 1.2. Set D D = { f ∈ C 1 R + : D f + k f k ∞}. Then, it holds that e λ = inf{D f : f ∈ DD, k f k = 1 and f 0 = 0}. To prove our conclusion, it suffices to verify that C ∞ R + k·k D1 = D D. 2.1 Adopting the standard Feller’s notations c.f. see [11, 13] for one-dimensional diffusion oper- ator, µd x and sx := R x e −Cu du are called speed measure and scale function, respectively. Moreover, L can be expressed as L f = d dµ d f ds = D µ D s f , and the boundary behavior of the corresponding process is also described by speed measure and scale function. Particularly, ∞ is said to be not regular if and only if Z ∞ sxdµd x + Z ∞ µ[0, x]s ′ xd x = ∞. 2.2 236 Electronic Communications in Probability Now, denote by H the complement of C ∞ R + k·k D1 in the Hilbert space D D, k · k D 1 . Following the arguments of [10; Example 1.2.2], H = ; if and only if ∞ is not a regular point. Therefore, 2.1 and 2.2 are equivalent. Next, we claim that 1.6 and 2.2 are also equivalent. On the one hand, if Z ∞ sxdµd x + Z ∞ µ[0, x]s ′ xd x = ∞, then 2 µ[0, ∞ + Z ∞ e −Cx d x 2 ≥ Z ∞ sxdµd x + Z ∞ µ[0, x]s ′ xd x = ∞, and so µ[0, ∞ + Z ∞ e −Cx d x = ∞. On the other hand, assume that µ[0, ∞ + Z ∞ e −Cx d x = ∞. If Z ∞ sxdµd x = ∞, then Z ∞ sxdµd x + Z ∞ µ[0, x]s ′ xd x = ∞; if Z ∞ sxdµd x ∞, then, the integration by parts formula yields Z ∞ µ[0, x]s ′ xd x = µ[0, x]sx ∞ − Z ∞ sxµd x = µ[0, ∞s∞− Z ∞ sxdµd x = ∞, and so it also holds that Z ∞ sxdµd x + Z ∞ µ[0, x]s ′ xd x = ∞. The required assertion follows by the above facts. ƒ According to Theorem 1.2, in recurrent settings we can use Chen’s variational formulas to improve the estimations for λ in Theorem 1.1. For instance, define four classes of functions: F II ={ f ∈ CR + : f 0 = 0 and f 0}, f F II ={ f ∈ CR + : f 0 = 0, there exists x such that f = f · ∧ x and f | 0,x ] 0}, F I ={ f ∈ C 1 R + : f 0 = 0 and f ′ 0}, f F I ={ f ∈ C 1 R + : f 0 = 0, there exists x such that f = f · ∧ x , f ∈ C 1 [0, x ] and f ′ | 0,x 0}. Then, [4, 5, 6] give us the following two powerful variational formulas for λ given by 1.1. First Eigenvalue of One-dimensional Diffusion Processes 237 Theorem 2.1. [Chen’s Formulas] For recurrent diffusion operator L, inf f ∈ f F II sup x0 II f x −1 = inf f ∈ f F I sup x0 I f x −1 ≥ λ ≥ sup f ∈F I inf x0 I f x −1 = sup f ∈F II inf x0 II f x −1 , 2.3 where I f x = e −Cx f ′ x Z ∞ x f e C a udu, II f x = 1 f x Z x d y e −C y Z ∞ y f e C a udu. Moreover, both inequalities in 2.3 become equalities if a and b are continuous. Next, we turn to the transient situation. To handle this case, [17] employs the h-transformed operator L h := h −1 ◦ L ◦ h, where h = R ∞ · e −Cu du. When written out, we get L h = h −1 ◦ L ◦ h = axdd x 2 + bx + 2hx −1 axh ′ xdd x := axdd x 2 + b ∗ xdd x. Letting e Cx = Z x b ∗ uaudu = Cx + 2 lnhxh0, one has Z ∞ e − e Cu du = h0 −2 Z ∞ e −Cu hu −2 du = ∞. Thus, the diffusion operator L h with diffusion coefficient a and the new drift b ∗ is recurrent. Note that the spectrum is variant under h-transforms. So, λ = λ h , where λ h is the first Dirichlet eigenvalue of L h on R + with an absorbing boundary at x = 0. That is, the transformed operator L h reduces transient cases into recurrent ones. It immediately follows that 4δ ∗ 2 −1 ≤ λ ≤ δ ∗−1 2 , where δ ∗ 2 = sup x0 Z x e −C ∗ y d y Z ∞ x a y −1 e C ∗ y d y. Furthermore, δ ∗ 2 = sup x0 h 2 Z x e −C y h y −2 d y · h0 −2 Z ∞ x a ye C y h 2 yd y = sup x0 hx −1 − h0 −1 Z ∞ x a ye C y h 2 yd y, 2.4 which is just δ 2 defined in 1.3. Again we use Chen’s variational formulas to refine the estimations for λ in Theorem 1.1. Theorem 2.1 along with the remark above yields that the following statement for λ given by 1.1. Theorem 2.2. For transient diffusion operator L, inf f ∈ f F II sup x0 II ∗ f x −1 = inf f ∈ f F I sup x0 I ∗ f x −1 ≥ λ ≥ sup f ∈F I inf x0 I ∗ f x −1 = sup f ∈F II inf x0 II ∗ f x −1 , 2.5 238 Electronic Communications in Probability where I ∗ f x = e −C ∗ x f ′ x Z ∞ x f e C ∗ a udu, II ∗ f x = 1 f x Z x d y e −C ∗ y Z ∞ y f e C ∗ a udu, C ∗ x = Cx + 2 ln hx, hx = R ∞ x e −Cu du and Cx = R x buaudu. Moreover, both in- equalities in 2.5 become equalities if a and b are continuous. The power of 2.3 and 2.5 are the following: 1 the variational formulas with single integral yield the Muckenhoupt’s estimations in Theorem 1.1 see [5; Theorem 2.1] for ergodic cases; 2 the variational formulas containing double integrals allow for more sharp estimates on λ see [6; Theorem 1.2] for ergodic cases. For the completeness, we will prove that the formula 2.5 implies the second assertion in Theorem 1.1. By similar arguments, Theorem 2.1 also improves the first assertion in Theorem 1.1. Firstly, the proof of [5; Theorem 1.1] yields sup f ∈F I inf x0 I ∗ f x −1 ≥ 4δ 2 −1 . 2.6 In fact, take f x = R x e −C ∗ u du 12 . Then, f ∈ F I and I ∗ f x = 2 Z x e −C ∗ u du 12 Z ∞ x Z z e −C ∗ u du 12 az −1 e C ∗ z dz. By the integration by parts formula and 2.4, Z ∞ x Z z e −C ∗ u du 12 az −1 e C ∗ z dz = − Z ∞ x Z z e −C ∗ u du 12 d Z ∞ z au −1 e C ∗ u du ≤ Z x e −C ∗ u du 12 Z ∞ x au −1 e C ∗ u du + 1 2 Z ∞ x Z ∞ z au −1 e C ∗ u du Z z e −C ∗ u du −12 e −C ∗ z dz ≤ δ 2 Z x e −C ∗ u du −12 + δ 2 2 Z ∞ x Z z e −C ∗ u du −32 e −C ∗ z dz = δ 2 Z x e −C ∗ u du −12 − δ 2 Z ∞ x d Z z e −C ∗ u du −12 ≤ 2δ 2 Z x e −C ∗ u du −12 . Thus, I ∗ f x ≤ 2 Z x e −C ∗ u du 12 · 2δ 2 Z x e −C ∗ u du −12 = 4δ 2 . First Eigenvalue of One-dimensional Diffusion Processes 239 The required assertion 2.6 follows. Secondly, we claim that δ −1 2 ≥ inf f ∈ f F I sup x0 I ∗ f x −1 . 2.7 For fixed x 0, take f y := f x y = R x∧ y e −C ∗ u du. Then f ∈ f F I . For any y x, f ′ y = e −C ∗ y , and I ∗ f y = Z ∞ y Z x∧u e −C ∗ s dsau −1 e C ∗ u du ≥ Z x e −C ∗ u du Z ∞ x au −1 e C ∗ u du. Noting that f ′ y = 0 for y ≥ x, inf y0 I ∗ f y = inf 0 yx I ∗ f y ≥ Z x e −C ∗ u du Z ∞ x au −1 e C ∗ u du. Since x is arbitrary, sup f ∈ f F I inf y0 I ∗ f y ≥ sup x0 Z x e −C ∗ u du Z ∞ x au −1 e C ∗ u du = δ 2 , which gives us 2.7. Therefore, according to 2.6 and 2.7, the required conclusion follows. We end this subsection with an illustration of the improvements offered by Theorem 2.1 over the bounds provided in Theorem 1.1. Let ax = 1 and bx = −x. The corresponding diffusion is recurrent and it is an easy exercise that λ = 1 with eigenfunction f x = x. From [17; Remark 1] or see [5; Example 3.9] we know δ 1 = sup x0 Z x e t 2 2 d t Z ∞ x e −t 2 2 d t ≈ 0.4788. Now, take f x = R x e u 2 2 du 12 . Then, δ ′ II := sup x0 II f x = sup x0 Z x e u 2 2 du −12 Z x e y 2 2 Z ∞ y e −t 2 2 Z t e u 2 2 du 12 d t d y ≈ 1.0928. On the other hand, for every x 0, take f x y := R x∧ y e u 2 2 du. Then, δ ′′ II := sup x0 inf z0 II f x z = sup x0 inf z0 Z z∧x e u 2 2 du −1 Z z e y 2 2 Z ∞ y e −t 2 2 Z x∧t e u 2 2 du d t d y = sup x0 ¨ Z x e u 2 2 du −1 Z x e −u 2 2 Z u e t 2 2 d t 2 du + Z ∞ x e −t 2 2 d t Z x e u 2 2 du « ≈0.9285. Therefore, for this example Theorem 1.1 gives us δ −1 = 2.0886 λ = 1 4δ −1 = 0.5221; while Theorem 2.1 yields that δ ′′−1 II = 1.0770 λ = 1 δ ′−1 II = 0.9150. 240 Electronic Communications in Probability

2.2 Proof of Theorem 1.3 and Extensions

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52