PERAN PEMBELAJARAN MESIN PADA PERTANIAN ERA DIGITAL

Universitas Budi Luhur – 26 MEI 2018



TANTANGAN PERTANIAN MASA DEPAN



PERTANIAN ERA DIGITAL



PEMBELAJARAN MESIN



PERAN PEMBELAJARAN MESIN PADA PERTANIAN
ERA DIGITAL
 Area Riset di Bidang Pertanian
 Contoh Riset Pembelajaran Mesin di Bidang Pertanian


1

2

3

4

Chemicalfertilizer heavy

overgrazing

deforestation

5

Chemicalfertilizer heavy

deforestation


overgrazing

Flash-flood event

Increasing
drought
25% DEGRADED FARMLAND, 2050

6

Chemicalfertilizer heavy

deforestation

overgrazing

Flash-flood event

Increasing
drought

25% DEGRADED FARMLAND, 2050

Hundreds of millions of people are likely to be forced to migrate over just the next 3
decades due to rapidly deteriorating farmland productivity in many regions — caused
by modern chemical- and fertilizer-heavy farming practices, overgrazing, deforestation,
flash-flood events, and increasing drought
7

Agric. 1.0. early 20th century, a
labour-intensive, low productivity.
Feed a population, requires a vast
number of small farms

8

Agric. 2.0. late of
2050, Green
Revolution,
supplemental
nitrogen and

synthetic
pesticides,
fertilizer, and
specialized
machine

Agric. 1.0. early 20th century, a
labour-intensive, low productivity.
Feed a population, requires a vast
number of small farms

9

Agric. 2.0. late of
1950, Green
Revolution,
supplemental
nitrogen and
synthetic
pesticides,

fertilizer, and
specialized
machine

Agric. 3.0. precision farming,
Agric. 1.0. early 20th century, a
labour-intensive, low productivity. late 1990, Military GPS signal
available for public,
Feed a population, requires a vast
number of small farms

10

Agric. 2.0. late of
1950, Green
Revolution,
supplemental
nitrogen and
synthetic
pesticides,

fertilizer, and
specialized
machine

Agric 4.0. a new
boost in
precision
agriculture
(early 2010),
cheap sensors,
low cost microprpcessor, high
bandwidth
celluler comm.,
Agric. 3.0. precision farming,
Agric. 1.0. early 20th century, a
cloud based
labour-intensive, low productivity. late 1990, Military GPS signal
ICT
available for public,
Feed a population, requires a vast

11
number of small farms

Agriculture 3.0 (precision agriculture):
- Accuracy of the operations,
- managing in-field variations rather than treating fields as a
whole,
- give each plant exactly what it needs to grow optimally
- Optimize the agronomic output while reducing the input
- Move from cutting the costs to seeking the ways to lower
costs and enhance the quality
- Technology :
GPS-signals (1990 & 2000)
Sensing & Control (1990)
Telematics (2000)
Data management (since 1980 : farming software)
During 1961- 2004, the agriculture yields
increased 300%

12


-

The Rate of yields increased is slow
Has to produce 70% more food in 2050, compare with 2011
Using less : energy, fertilizer, pesticide
Lowering levels of GHGs
Coping with climate change

22 X

Agriculture Next Gen.
- Green one
- Science and
technology at the
heart

13

14


- a set of nature-inspired computational methodologies and
approaches to address complex real-world problems to
which mathematical or traditional modelling can be useless
for a few reasons
a. The processes might be too complex for
mathematical reasoning,
b. It might contain some uncertainties during the
process,
c. The process might simply be stochastic in nature.
d. Many real-life problems cannot be translated into
binary language (unique values of 0 and 1) for
computers to process it. Computational Intelligence
therefore provides solutions for such problems
15

16

- Understanding of the
underlying system.

- Interpretable (not a black
box)
- is intelligence
demonstrated
by machines
- a machine
mimics
"cognitive"
functions
(learning and
solving)

- Learning from data so as to be
able to automate functionality
- Not understansing, but
engineering

• STAT
• ML
• DT MNG

• AI
• CI

discovering patterns in
large data sets
involving methods at
the intersection of
machine learning,
statistics, and
database systems

Study of adaptive mechanisms to enable
intelligent in complex and changing
environment  algorithm inspired by
biological process

17

CS
CI

ML

AI
DT MNG

STAT

DT SAINS

18

Domain/Populati
on/Universal Set
Model
EVALUATION

Without
taking
data
Fuzzy Inference
System, Ev.
Computation,
PSO, Ant Colony
Alg., AIS.

Training
Data
Neural Network :
MLP, SOM, LVQ,
CNN, TDNN, etc.
Fuzzy : ANFIS,
Fuzzy C-Means

Testing
data
Testing

- Feature
Extraction/Representation
- Prediction
- Exploration : finding a
useful pattern/information
- Optimization : Finding the
best object due to a
certain goals

Model

19

TYPE OF LEARNING
1. Supervised
2. Unsupervised
3. Semi Supervised
4. Reinforcement
5. Learning by Expert
CRITERIA
1. Optimization
2. Biological Inspired

GOALS
-Feature Extraction/Representation
-Prediction
-Exploration : finding a useful
pattern/information
-Optimization : Finding the best
object due to a certain goals
20



Supervised (inductive) learning
 Training data includes desired outputs



Unsupervised learning
 Training data does not include desired outputs



Semi-supervised learning
 Training data includes a few desired outputs



Reinforcement learning
 Rewards from sequence of actions



Learning by Expert
21

Computationa
l Intelligence
Algorithm

- Expected Label
- Expected Value
- etc

22

Computationa
l Intelligence
Algorithm

- Expected
Label
- Expected
Value
- Valuable
patternl
- etc
23

Domain
/Population/Unive
rsal Set

Modellig
Experts and
engineers

- Expected
object in
the stated
Domain
- Expected
value/label
24

25

CI
Algorithm

Model
OK

No

- Expected
Label
- Expected
Value
- etc

28

29

30

Biological neuron

biological neural network

Artificial neuron
Artificial Neural Network

31

Tipe 1 :
Tsukamoto

Tipe 2 :
Mamdami

Tipe 3 :
Sugeno

34

35

f1 and f2 is a
function of x and y

Using
Sugeno
36

37

Selection

Crossover
Fitness

domain

Obyek/Titik
dalam
domain

Mutation

38

Particle

Ik
X =
P =
V =
x_fitness = ?
p_fitness = ?



A particle (individual) is composed of:
 Three vectors:
▪ The x-vector records the current position (location) of the particle in
the search space,
▪ The p-vector records the location of the best solution found so far
by the particle, and
▪ The v-vector contains a gradient (direction) for which particle will
travel in if undisturbed.
 Two fitness values:
▪ The x-fitness records the fitness of the x-vector, and
▪ The p-fitness records the fitness of the p-vector.

39

40

41

max

y

fitness

x
search space

min

max

y

fitness

x
search space

min

max

y

fitness

x
search space

min

max

y

fitness

x
search space

min

max

y

fitness

x
search space

min

max

y

fitness

x
search space

min

max

y

fitness

x
search space

min

max

y

fitness

x
search space

min

50

Ant Algorithms – (P.Koumoutsakos – based on notes L. Gamberdella (www.idsia.ch)

52

AIS : models the natural immune system’s ability to
detect cells foreign the body
A computational paradigm with powerfull pattern
recognition abilities, mainly applied to anomaly detection
Pathogens

Skin
Biochem ical
barriers
Innate
im m une
response

Adaptive
im m une
response

Phagocyte

Lym phocytes

53

54



Computer Security(Forrest’94’96’98, Kephart’94, Lamont’98’01,02,
Dasgupta’99’01, Bentley’00’01,02)



Anomaly Detection (Dasgupta’96’01’02)



Fault Diagnosis (Ishida’92’93, Ishiguro’94)



Data Mining & Retrieval (Hunt’95’96, Timmis’99’01, ’02)



Pattern Recognition (Forrest’93, Gibert’94, de Castro ’02)



Adaptive Control (Bersini’91)



Job shop Scheduling (Hart’98, ’01, ’02)



Chemical Pattern Recognition (Dasgupta’99)



Robotics (Ishiguro’96’97,Singh’01)



Optimization (DeCastro’99,Endo’98, de Castro ’02)



Web Mining (Nasaroui’02,Secker’05)



Fault Tolerance (Tyrrell, ’01, ’02, Timmis ’02)



Autonomous Systems (Varela’92,Ishiguro’96)



Engineering Design Optimization (Hajela’96 ’98, Nunes’00)

55

56

IT-Based Agriculture Process
• Crop Monitoring (Satellite, Drone, GPS,
Selluler Communication)
• Precision Livestock Farming
• Nutrient Management and Budgeting
• Integrated Farming
• Integrated Pest management
• Crop Simulation
• Aerial Seeding
• Agriculture Robot
• Environmental Monitoring
• Precision Agriculture
• etc

57

- Enabling by :
cheap and improved sensors and actuator
low cost micro-processor
High bandwidth celluler communication
cloud based ICT systems
big data analytics
Integrated internal and external networking of farming
operations.
- Digital information exist for all farm sectors and processes
- Communication with external partners (suppliers and end
customers) carried out electronically
- Data transmission, processing and analysis are automated

58

22 X

- IoT : intergrated structured
and unstructured data to
into food production.
Applying machine learning
to sensor or drone data
- Automation of Skills and
workforce : remotely,
automated, risks will be
identified, issues solved

- Data-driven farming : analyzing weather, seeds, soil quality,
diseases, historical data, market trend, prices
- Chatbots: assisting farmers with answers and
recommendations on specific problems
59

Climate change:







More variable and
extreme weather
conditions
Increasing temperature
Excessive rainfall
Consequences for food
and waterborne
diseases
Consequences crop
production areas and
ecosystems

Governments:

Responsibility and concern for food supply, quality and sustainability
Regulations and policy




Management and Control of Fresh and Processed Products



Agricultural and Agroindustrial Management
Systems (Quality, Cost, Delivery, Adaptability)

Control and
Assurance


Global change:







Shift demographic,
social and economical
conditions
Towards worldwide
markets
Global sourcing of fresh
and agricultural
produce
Many movements and
long distances in supply
chains
Increasing volumes and
new harvesting area

Consumer trends:



Agroindustrial Supply Chain :
Farming





Processing
Industry

Distribution
and Retail

Agricultural products are perishable, seasonal, vary
and bulky
Risk of product contamination and deterioration
during transportation
Lot of human handling

Fresh and
Processed
Products





Increase
consumption
on fresh and
processing
products
Increase
awareness of
food safety
Change in
costumer
behavior
Change in
types of
products
Changes in
demand
Increase the
need for new
and healthy
products

By : Yandra Arkeman

Companies & Fund & InvestorExperts
Management

Gov

Farmer
personal
websites

Agriculture Eco Management
System
CRM

ERP

HRM

Farmers

Agriculture Ecosystem Portal

IoT Agriculture Solution

Agri Market
Place

CMS

Customers

Precise
Agriculture

Agri Eco
Social
network

Smart
Weather

Smart
Tools

Agriculture IoT Platform
Data Storage, Processing, Mining & Analytics
Gateways
Environmental
sensors

Farm

Weather
sensors

Weather

Soil
sensors

Tools

Water
sensors

Plant
sensors

Animal
sensors

Green
Energy

COMPUTATIONAL
INTELLIGENCE IN CLIMATE
IMPACT AND MODELLING

62

JANGKA PENDEK  VARIABILITAS IKLIM
a. PRAKIRAAN PEUBAH IKLIM : CURAH
HUJAN, SUHU, KELEMBABAN,
KECEPATAN DAN ARAH ANGIN
b. DAMPAK VARIABILITAS IKLIM DI SUATU
SEKTOR
c. JENIS : PREDIKSI, KLASIFIKASI,
PEMODELAN SISTEM
DATA
SATELIT/
MODEL/RE
ANALISIS

PHENOMEN
A/IKLIM
GLOBAL

PREDIKSI IKLIM LOKAL

PREDIKSI/KLASIFIKASI
DAMPAK VARIABILITAS
IKLIM

JANGKA PANJANG  CLIMATE CHANGE
a. PROYEKSI IKLIM : CURAH HUJAN, SUHU,
KELEMBABAN, KECEPATAN DAN ARAH
ANGIN  MENGGUNAKAN SKENARIO
YANG DITETAPKAN OLEH IPCC
b. DAMPAK PERUBAHAN IKLIM DI SUATU
SEKTOR (PERTANIAN, KETERSEDIAAN
AIR, ENERGI, KESEHATAN, DSB
c. JENIS : PREDIKSI, KLASIFIKASI,
PEMODELAN SISTEM
DATA SATELIT/
MODEL/REANA
LISIS/OBSERV
ASI (HISTORY)

DATA GCM
SESUAI
SCENARIO
DAN MODEL
PROYEKSI
IKLIM SESUAI
SCENARIO

VISUALISASI SPASIAL
DAMPAK PERUBAHAN
IKLIM PADA SUATU SEKTOR

64

Chromosome Code
Init. population
Decode
Mutation

Evaluate

Selection
Crossover
Genetic
Operators

Fitness

Genetic Coefficients
and Their Uncertaintie

DSSAT : a Crop Modelling
Simulation System

66

Data Model

Variables :
• Radiation
• Temperature
• Evaporation
• Humidity
• Precipitation
• Wind
• etc

Temporal (Historical & Future)
Spatial (latitude x longitude)
Vertical (Above and Below the
Earth’s Surface)

Volume
&
Velocity
67

Observation
Data

Climate Index :
- El Nino Southern Oscillation (ENSO),
- Indian Ocean Dipole-Mode (IOD),
- Southern Oscillation Index (SOI)
- El Nino Modoki (EMI)
etc

Global Data
Model

Influenced to
Regional Climate
Evidence

Obser
vation

Agric.

IMPACT :
Sectors

Avia.
Health

Energy
ETC

Total Hujan

Peubah Iklim Lokal :
Awal dan akhir Musim
Hujan, Total Hujan,
Jumlah Hari Hujan,
Distribusi d hari hujan
Berturut-turut, Hujan
ekstrem, panjang musim
kering, dsb.

AWAL MUSIM
HUJAN

AKHIR MUSIM
HUJAN

Series of
Data Model

Domain
Downsclaing :

Observation=f(Data Model)

Observati
onal Data
Series

1. – . 2017. Agriculture 4.0- Ensuring Connectivity of Agriculture Equipment.
FarmNet
2. Clercq, M..D., Anshu V., dan Alvaro B. Agriculture 4.0 : The Future
Technology. World Government Summit.
www.worldgovernmentsummit.org.
3. -. Industry 4.0 : Digital Transformation in Vietnam Agriculture & Indstri
Development. SaoBacDau Tachnlogy Group.
4. -. Digital Farming : What does it Really Mean?. European Agricultural
Machinery (CEMA).
5. Edward L dan Bart G. 1996. Climate & Weather Explained. Routledge,
29 West 35th Street, New York.
6. Yi-Fan Chang. 2011. An Overview of Machine Learning. (Lecture Note).
7. Pedro D. Machine Learning. (Lecture Note).
8. Jong Y.C. Machine Learning and Statistical Analysis. (Lecture Note)
9. Neuro-Fuzzy and Soft Computing : A Computational approach to learning
and Machine Intelligence. Prentice Hall. International Edition.
10. Laurene F. 1994. Fundamentals of Neural Networks. Prentice Hall,
Englewood Cliffs
11. Zbigniew M. 1996. Genetic Algorithms + Data Structures = Evolution
Programs. Th.. Ed. Ketiga. Springer
12. Engelbrecth, A.P. 2007. Computational Intellegence : An Introduction.
John Wiley & Sons, Ltd.

72

73

Dokumen yang terkait

PENGARUH PEMBERIAN SEDUHAN BIJI PEPAYA (Carica Papaya L) TERHADAP PENURUNAN BERAT BADAN PADA TIKUS PUTIH JANTAN (Rattus norvegicus strain wistar) YANG DIBERI DIET TINGGI LEMAK

23 199 21

KEPEKAAN ESCHERICHIA COLI UROPATOGENIK TERHADAP ANTIBIOTIK PADA PASIEN INFEKSI SALURAN KEMIH DI RSU Dr. SAIFUL ANWAR MALANG (PERIODE JANUARI-DESEMBER 2008)

2 106 1

FREKUENSI KEMUNCULAN TOKOH KARAKTER ANTAGONIS DAN PROTAGONIS PADA SINETRON (Analisis Isi Pada Sinetron Munajah Cinta di RCTI dan Sinetron Cinta Fitri di SCTV)

27 310 2

MANAJEMEN PEMROGRAMAN PADA STASIUN RADIO SWASTA (Studi Deskriptif Program Acara Garus di Radio VIS FM Banyuwangi)

29 282 2

ANALISIS PROSPEKTIF SEBAGAI ALAT PERENCANAAN LABA PADA PT MUSTIKA RATU Tbk

273 1263 22

PENERIMAAN ATLET SILAT TENTANG ADEGAN PENCAK SILAT INDONESIA PADA FILM THE RAID REDEMPTION (STUDI RESEPSI PADA IKATAN PENCAK SILAT INDONESIA MALANG)

43 322 21

KONSTRUKSI MEDIA TENTANG KETERLIBATAN POLITISI PARTAI DEMOKRAT ANAS URBANINGRUM PADA KASUS KORUPSI PROYEK PEMBANGUNAN KOMPLEK OLAHRAGA DI BUKIT HAMBALANG (Analisis Wacana Koran Harian Pagi Surya edisi 9-12, 16, 18 dan 23 Februari 2013 )

64 565 20

PEMAKNAAN BERITA PERKEMBANGAN KOMODITI BERJANGKA PADA PROGRAM ACARA KABAR PASAR DI TV ONE (Analisis Resepsi Pada Karyawan PT Victory International Futures Malang)

18 209 45

STRATEGI KOMUNIKASI POLITIK PARTAI POLITIK PADA PEMILIHAN KEPALA DAERAH TAHUN 2012 DI KOTA BATU (Studi Kasus Tim Pemenangan Pemilu Eddy Rumpoko-Punjul Santoso)

119 459 25

PENGARUH BIG FIVE PERSONALITY TERHADAP SIKAP TENTANG KORUPSI PADA MAHASISWA

11 131 124