PEMANFAATAN APLIKASI GEOGEBRA DALAM PEMB (1)

PEMANFAATAN APLIKASI GEOGEBRA DALAM PEMBELAJARAN
LINGKARAN DAN GARIS SINGGUNG LINGKARAN
D
I
S
U
S
U
N
Oleh:
Kelompok 1
DWI KHAIRANI

35143035

FARIDAH ULFAH LUBIS

35143064

RIDWAN RAMADHAN


35144021

ROFIKOTUL HUSNA

35143061

FAKULTAS ILMU TARBIYAH DAN KEGURUAN
PROGRAM STUDI PENDIDIKAN MATEMATIKA
UNIVERSITAS ISLAM NEGERI SUMATERA UTARA
MEDAN
2016

KATA PENGANTAR

Puji syukur kami limpahkan kehadirat Allah SWT, karena atas pertolongan Nya, kami
dapat menyelesaikan makalah ini tepat pada waktu yang telah direncanakan sebelumnya. Tak
lupa sholawat serta salam kita haturkan kepada Nabi Muhammad SAW beserta keluarga dan
sahabat, semoga selalu dapat menuntun Penyusun pada ruang dan waktu yang lain.
Makalah ini kami susun dengan sebaik-baiknya untuk memenuhi beban mata kuliah
Media Pembelajaran berbasi ICT, dengan judul


Pemanfaatan Aplikasi Geogebra dalam

Pembelajaran Lingkaran dan Garis Singgung Lingkaran .
Pada kesempatan ini kami tak lupa mengucapkan terimakasih terhadap semua pihak
yang telah membantu selama proses penulisan makalah ini, yang tanpa bantuan dari semua
pihak kami tidak akan mampu menyelesaikan tugas makalah ini. Semoga makalah ini dapat
membantu meningkatkan pengetahuan pembaca mengenai Media Pembelajaran.

Medan, 2016

Penyusun

i

DAFTAR ISI

Kata Pengantar ........................................................................................................ i
Daftar Isi ................................................................................................................. ii
BAB I PENDAHULUAN

A. Latar Belakang ...................................................................................................... 1
B. Rumusan Masalah ................................................................................................ 1
C. Tujuan .................................................................................................................. 2
BAB II PEMBAHASAN
A. Mengenal Lingkaran ............................................................................................. 3
B. Pengenalan Geogebra .......................................................................................... 4
C. Pembelajaran Lingkaran dan Garis Singgung Lingkaran dengan Geogebra ........ 11
BAB III KESIMPULAN ................................................................................................ 24
DAFTAR PUSTAKAN ................................................................................................. 25

ii

BAB I
PENDAHULUAN
A. Latar Belakang
Mata pelajaran matematika adalah pelajaran yang sejak dahulu ditakuti atau dihindari
oleh peserta didik. Hal ini berakibat, peserta didik malas untuk mengkaji matematika yang
membuat nilai mata pelajaran matematika mereka selalu rendah.
Dari permasalahan yang sudah lama ini, maka guru harus bisa menghilangkan rasa takut
peserta didik terhadap matematika. Salah satu usaha untuk mempermudah siswa, guru

maupun perangkat lainnya, serta menghilangkan persepsi buruk siswa terhadap mata pelajaran
matematika adalah dengan memberikan sarana dan prasarana yang inovatif.
Kehadiran perangkat komputer dalam proses pembelajaran matematika telah disambut
dengan baik dalam perangkat pendidikan. Sebagai contoh penggunaan komputer dalam
pembelajaran matematika adalah software geogebra. Tampilan sederhana serta penggunaan
software yang interaktif dapat menjadikan software Geogebra menjadi pilihan yang tepat
dalam menyampaikan konsep, geometri, dan kalkulus. Konsep-konsep yang diberikan pada
software geogebra diharapkan dapat memotivasi peserta didik dalam pembelajaran dan
menghilangkan persepsi yang buruk terhadap mata pelajaran matematika.
Penjelasan dalam makalah ini diharapkan dapat menambah ilmu bagi peserta didik.
Namun itu semua tergantung kreativitas dan kemampuan seorang guru mengolah materi
menjadi lebih menarik dengan menggunakan geogebra, namun juga harus disesuaikan dengan
model dan strategi yang dipakai
B. Rumusan Masalah
Berdasarkan paparan masalah diatas, maka rumusan masalah berdasarkan makalah ini
adalah :
1. Apa yang dimaksud dengan lingkaran ?
2. Bagaimana cara menghitung keliling, luas, serta Panjang Garis Singgung Lingkaran ?
3. Apa yang dimaksud dengan Geogebra ?
4. Bagaimana menggunakan geogebra untuk menggambarkan lingkaran ?

5. Bagaimana menggunakan geogebra untuk memecahkan masalah pada lingkaran ?
1

C. Tujuan
Tujuan akhir dari makalah ini agar kita semua memahami bagaimana cara
memanfaatkan geogebra dalam pembelajaran lingkaran sebagai cara alternatif dalam
menyelesaikan masalah pada materi lingkaran. Selain itu kita dapat menerapkannya dalam
dunia kerja atau kegiatan belajar mengajar yang nantinya akan kita hadapi.

2

BAB I
PEMBAHASAN
A. Mengenal Lingkaran
1. Definisi Lingkaran
Lingkaran adalah lengkung tertutup yang semua titik-titik pada
lengkung itu berjarak sama terhadap suatu titik tertentu dalam lengkungan
itu. Titik tertentu dalam lengkungan disebut pusat lingkaran dan jarak
tersebut disebut jari-jari lingkaran. Perhatikan gambar disamping. Garis
lengkung merupakan tempat kedudukan titik-titik yang berjarak sama

terhadap titik L yang disebut lingkaran. Titik L disebut titik pusat dan
lingkarannya disebut lingkaran L.
2. Keliling Lingkaran
Keliling lingkaran adalah panjang busur/lengkung pembentuk
lingkaran. Keliling suatu lingkaran dapat kita ukur dengan memotong
lingkaran di suatu titik, kemudian meluruskan lengkung lingkaran itu lalu
kita ukut panjang garis lingkaran dengan mistar.
Panjang garis dari sebuah lingkaran disebut dengan keliling
lingkaran. Nilai dari (keliling: diameter adalah sama untuk semua lingkaran.
Nilai tersebut tidak akan pasti dan nilainya merupakan nilai pendekatan dan diitulis dengan
lambang π (phi).
Keliling

Keliling : diameter = π

Dengan π = 3,14 atau π =

22
7


Sehingga rumus keliling lingkaran dapat ditulis sebagai berikut
K = πd atau K = 2πr

3. Luas Lingkaran
Lingkaran merupakan suatu lengkung tertutup karena lingkaran
membatasi suatu daerah atau bidang tertentu yang berada di dalamnya.
Daerah yang diarsir pada gambar disamping merupakan daerah yang
diabatasi oleh lingkaran.
Luas lingkaran adalah luas daerah yang dibatasai oleh lengkung
lingkaran. Luas lingkaran sama dengan π kali kuadrat jari-jarinya. Jika jarijari lingkaran adalah r maka luasnya adalah sebagai berikut:
L = πr2

3

Rumus luas lingkaran yaitu L = πr2 ini dapat ditemukan dengan pendekatan. Pendekatan ini
dilakukan dengan membagi lingkaran ke dalam sejumlah juring yang kongruen. Kemudian membentuk
segi-n beratuaran yang bersesuaian dengan juring yang berbentuk. Luas segi-n beraturan tersebut akan
mendekati luas lingkaran.

4. Panjang Garis Singgung Lingkaran (PGSL)

Panjang garis singgung lingkaran (PGSL) yang ditarik dari titik di luar lingkaran dapat
dihitung, apabila diketahui panjang jari-jari lingkaran (r) dan jarak titik pusat lingkaran dengan
titik di luar lingkaran tersebut (d). ΔOPQ siku-siku di P, dengan OP = r, OQ = d, dan PQ = PGSL.
Berdasarkan Teorema Pythagoras diperoleh :
PGSL = �2 − � 2
d =

����

2

+ �2

r = � 2 − ����

2

B. Pengenalan Geogebra
1. Apa itu Geogebra ?
Geogebra merupakan salah satu software matematika yang dinamis dimana digunakan

dalam bidang geometri, aljabar, dan kalkulus. Nama Geogebra merupakan akronim dari
Geometry dan Algebra. Geogebra dikembangkan untuk mempermudah belajar di sekolah.
Pengembangnya adalah Markus Hohenwarter dari Austria dan tim programmer Internasional
sejak tahun 2001. Algebra dirilis sebagai perangkat lunak opensource sehingga dapat
dimanfaatkan secara gratis dan bebas untuk dikembangkan. Software ini dapat diunduh di
http://geogebra.org. Software ini sudah banyak ditranslate keberbagai bahasa dan cocok
digunakan untuk pembelajaran Matematika di sekolah. Hal sederhana yang dapat dilakukan
dengan geogebra adalah menggambar titik, ruas garis, vektor, poligon, irisan kerucut, dan lain
sebagainya. Geogebra ditujukan untuk para guru ataupun dosen maupun siswa disekolah
ataupun mahasiswa. Dalam makalah ini, penulis menggunakan Geogebra 5.0.282.0-3D.
2. Tampilan
Berikut gambar layar awal program Geogebra

4

MENU

Toolbar

Window

Graphics

Window
Algebra

Kolom Input
Tampilan layar geogebra tampak cukup sederhana dan terdiri atas beberapa bagian
yakni:
a. Menu ; daftar nama-nama baku seperti program-program lain yang berbasis
Windows, menu terdiri dari : File, Edit, View, Options, Tools, Windows, Help
b. Toolbar ; terdiri atas beberapa ikon tool (yang disebut modus) yang berguna untuk
menggambar secara langsung di papan gambar
c. Window Algebra ; terletak disebelah kiri (default) yang berisikan koordinat-koordinat
maupun persamaan dari gambar-gambar yang dibuat pada papan gambar.
d. Window Graphics ; terletak disebelah kanan (default) yang disebut juga papan
gambar. Di jendela inilah user menggambarkan objek-objek geometri yang diinginkan
e. Kolom Input ; kolom untuk menuliskan persamaan, koordinat atau fungsi yang akan
ditampilkan pada Window Graphic.
3. Toolbar
Salah satu bagian dari tampilan layar geogebra adalah toolbar. Pada toolbar terdapat

ikon-ikon shortcut yang dapat langsung digunakan pada papan gambar untuk menggambar titik
maupun bangun yang ingin kita gambar.

5

Kursor geogebra untuk memindahkan objek-objek
Kursor geogebra yang memutar suatu objek mengelilingi
suatu titik

Menggambar titik baru
Menggambar titik baru tepat pada objek yang diinginkan
Menempatkan suatu titik pada objek yang diinginkan
Menyilangkan dua buah objek
Menggambar titik tengah pada sebuah objek (segment)
Menggambar titik dengan koordinat bilangan kompleks

Menggambar garis yang melalui dua titik
Menggambar segmen garis dua titik
Menggambar segmen garis yang memiliki panjang
tertentu
Menggambar sinar garis yang melalui dua titik
Menghubungkan tiap titik menjadi segmen garis
Menggambar vektor diantara dua titik
Menggambar vektor dari suatu titik

Menggambar sebuah bidang datar
Menggambar sebuah bidang datar beraturan
Menggambar bidang dengan dua titik yang diketahui
Menggambar bidang dari vektor

6

Menggambar garis yang melalui suatu titik dan
tegak lurus dengan sebuah garis lain
Menggambar garis yang sejajar dengan garis lain
Menggambar garis bagi sebuah segmen garis
Menggambar garis bagi sudut
Menggambar garis singgung lingkaran dari sebuah
titik di luar lingkaran
Menggambar garis penghubung dua titik singgung
lingkaran terhadap sebuah titik
Membuat persamaan garis dari dua titik yang
diketahui
Menggambar garis melengkung melalui dua titik

Menggambar lingkaran dengan titik pusat dan
melalui sebuah titik
Menggambar lingkaran dengan titik pusat dan
diketahui jari-jarinya
Menggambar lingkaran yang jari-jarinya
adalah sebuah segmen garis
Menggambar lingkaran dari tiga titik yang
diketahui
Menggambar setengah lingkaran dari dua
buah titik
Menggambar lingkaran dari dua buah titik,
yang menjadikan salah satu titik adalah center
Menggambar setengah lingkaran dari tiga titik
yang diketahui
Membuat lingkaran tak sempurna dari
Membuat lingkaran tak sempurna dari tiga
titik tanpa titik pusat

7

4. Cara Menggunakan Geogebra
a. Dengan Keyboard
Menggambar di geogebra dapat menggunakan keyboard, dengan cara langsung
menuliskan koordinat, persamaan, atau fungsi yang ingin digambarkan di kolom
input. Contoh menggambar sebuah lingkaran dengan persamaan x2+y2=r2 yang
langkah-langkahnya sebagai berikut
i. Pada tampilan layar awal program Geogebra, tuliskan persamaan lingkaran yang
diinginkan pada kolom input. Misalnya persamaan x2+y2=r2. Untuk menuliskan
pangkat pada kolom input bisa dengan cara menekan tombol keyboard Ctrl +
Shift + +, atau bisa juga dengan mengklik gambar
yang tepat berada di ujung
kolom input. Setelah ditulis tekan enter.

ii.

Maka akan muncul gambar sebuah lingkaran pada papan gambar geogebra

8

b. Dengan Mouse
Menggambar di geogebra bisa juga dengan menggunakan mouse. Penggunaan
mouse bisa langsung dengan mengklik ikon toolbar lalu klik sembarang pada papan
gambar. Contohnya menggambar sebuah lingkaran yang mempunyai jari-jari 2.
i.

Pada tampilan layar awal geogebra, klik ikon
klik sembarang pada papan gambar.

9

pada bagian toolbar. Kemudian

ii.

Setelah diklik pada papan gambar, maka akan muncul kotak dialog yang meminta
untuk mengisikan nilai jari-jari yang diinginkan. Misal jari-jarinya adalah 2.
Kemudian klik Ok

iii.

Maka akan muncul gambar sebuah lingkaran dengan jari-jari 2 pada papan
gambar

10

C. Pembelajaran Lingkaran dan Garis Singgung Lingkaran dengan Geogebra
1. Lingkaran dengan pusat A(a,b) dan melalui titik B(c,d)
i.

Pilih ikon

(Circle eith Center through Point) pada kelompok tool lingkaran.

ii.

Klik sembarang pada papan gambar untuk Titik Pusat (A), kemudian klik lagi untuk titik
yang dilalui oleh lingkaran (B).

11

iii.

Untuk menentukan titik pusat dan titik yang dilalui lingkaran, dengan cara mengganti
nilai titik A dan titik B dengan menuliskan nilainya pada kolom input

iv.

Untuk mengetahui panjang radius dari lingkaran yang kita buat dapat dengan cara
memilih ikon
(modus Segment) pada kelompok tool line. Lalu klik titik A dan drag
sampai ke titik B. Maka akan muncul panjang Segment yang dibuat pada Window
Algebra.

12

2.

Lingkaran yang mempunyai persamaan x2 + y2 + Ax + By + C = 0
i. Misalnya kita mempunyai persamaan x2 + y2 - 6x + 4y + 11 = 0, Tuliskan persamaan ini
ke kolom input pada layar geogebra. Tekan Enter

ii.

Akan muncul gambar lingkaran pada papan gambar.

iii.

Untuk mengetahui koordinat titik pusat lingkaran, dapat dilakukan dengan cara
menuliskan perintah A=center[c] pada kolom input. Kemudian tekan enter
13

Titik Pusat

3.

Lingkaran yang berpusat di A(a,b) dan dilalui oleh ax + by + c = 0
Misalnya ada sebuah kasus : Tentukan persamaan Lingkaran yang memiliki pusat A(-1,1)
dan dilalui oleh persamaan 2x + 3y – 6 = 0.
i. Gambarkan titik pusat A(-1,1) dengan cara menuliskan pada kolom input. Lalu tekan
enter

14

ii.

Kemudian gambarkan garis 2x + 3y – 6 = 0 dengan cara menuliskannya pada kolom
input pada papan gambar.

iii.

Langkah selanjutnya gambarkan garis yang melalui titik A dan tegak lurus dengan garis
yang telah dibuat tadi dengan cara memilih ikon
(modus Perpendicular Line) pada
toolbar. Klik titik A kemudian klik garis yang tegak lurus dengan titik A

iv.

Gambarkan lingkaran yang berpusat pada titik A dan melalui titik B dengan memilih
ikon
(modus Circle with center trough point). Maka akan muncul persamaan
lingkaran pada layar sebelah kiri.
15

Pers. Lingkaran

4.

Garis singgung lingkaran (x – a)2 + (y – b)2 = r2 di titik A(c,d) pada lingkaran
Misalnya ada sebuah kasus : Tentukan garis singgung Lingkaran yang memiliki
persamaan (x – 4)2 + (y – 5)2 = 8 dan dilalui titik A(2,3)!
i. Gambarkan Lingkaran dengan menuliskan persamaan pada kolom input

ii.

Kemudian gambarkan titik A(2,3), pada kolom input
16

iii.

Selanjutnya pilih ikon
(modus Tangent) pada toolbar lalu klik titik A, kemudian klik
lingkaran, maka akan muncul sebuah garis yang menyinggung lingkaran di titik A
Pers. Lingkaran

iv.

Persamaan garis singgung lingkaran dapat diketahui dengan melihat layar sebelah kiri

17

5.

Garis singgung lingkaran yang melalui titik diluar lingkaran
i. Gambarkan lingkaran dengan persamaan (x-4)2 + (y-4)2 = 16

ii.

Kemudian gambarkan titik A(10,4) pada kolom input

18

iii.

Gambarkan garis yang melalui titik A dan menyinggung lingkaran dengan cara klik ikon
(modus Tangent) pada toolbar, lalu klik A dan lingkaran. Maka akan muncul garis
yang melalui titik A dan menyinggung lingkaran

6.

Menunjukkan dua tali busur yang berjarak sama kepusat lingkaran mempunyai panjang
sama besar
i. Gambarkan dua buah lingkaran yang memiliki titik pusat yang sama namun dengan
radius yang berbeda

19

ii.

Gambar dua buah garis singgung yang menyinggung lingkaran dalam

iii.

Gambarkan garis yang dari titik potong setiap garis singgung dengan lingkarang luar.

iv.

Ternyata garis nilai kedua jarak tersebut bernilai sama yaitu 2

20

7.

Menentukan persamaan lingkaran yang melalui tiga titik tak segaris
i.

Gambarlah sebuah segitiga ABC dengan cara mengklik ikon
kolom toolbar

ii.

Gambarkan garis bagi segitiga, dengan cara menuliskan pada kolom input
LineBisector[a]
LineBisector[b]
LineBisector[c]
Kemudian enter, maka akan muncul gambar seperti ini

21

(polyggon) pada

8.

iii.

Kemudian buat sebuah titik tepat pada titik potong garis bagi segitiga. Lalu gambarkan
lingkaran dengan cara menuliskan pada kolom input circle[D,A].

iv.

Maka akan tampak persamaan lingkaran yang dicari

Pusat lingkaran dalam segitiga adalah titik potong garis bagi segitiga itu sendiri
i. Gambarkan sebuah lingkaran dengan tiga garis singgung yang saling berpotongan

22

ii.

Tandai ketiga titik potong garis singgung, kemudian ubah agar menjadi segitiga utuh
dengan menuliskan Polygon[B,C,D] di kolom input

iii.

Gambarkan garis sudut segitiga yang telah dibuat dengan cara menuliskan pada kolom
input
AngleBisector[B,C,D]
AngleBisector[B,D,C]
AngleBisector[C,B,D]

iv.

Perhatikan titik potong garis bagi, ternyata tepat pada titik pusat yang ada didalam
segitiga
23

BAB III
KESIMPULAN

Penggunaan komputer pada zaman globalisasi ini sangatlah penting dan diutamakan
terutama dalam bidang pendidikan yang dapat bermanfaat besar dalam proses pembelajaran.
Agar dapat meyaingi sekolah-sekolah yang lain, guru harus kreatif dan inovatif dalam
pembelajaran termasuk harus mampu menggunakan media komputer dalam pembelajaran.
Salah satu media tersebut adalah software Geogebra. Geogebra merupakan salah satu
sofware yang menggabungkan geometri, aljabar, dan kalkulus. Konsep pada materi geometri
yang abstrak, dapat dibuat menjadi lebih konkrit dengan bantuan software geogebra.
Pernyataan dalam aljabar juga dapat langsung digambarkan menjadi sebuah titik, garis, bangun
datar, serta bangun tiga dimensi pada koordinat kartesius.
Adanya penggunaan sofware geogebra dalam pembelajaran matematika diharapkan
mampu memotivasi siswa dan menjadikan pembelajaran matematika yang menyenangkan
didalam kelas.

24

DAFTAR PUSTAKA

Simangunsong. Wilson, Sukino. 2006. Matematika untuk SMP Kelas VIII. Jakarta : Penerbit
Erlangga
ST. Negoro, B. Harahap. 1999. Ensiklopedia Matematika. Jakarta : Ghalia Indonesia
https://www.scribd.com/doc/118456996/MAKALAH-GEOGEBRA (diakses pukul 7.25 Wib, 26
Oktober 2016)
http://mathandmultimedia.com/geogebra/ (diakses pukul 7.27 Wib, 26 Oktober 2016)

25