3c handbook metal forming
(2)
3
Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo(3)
M E T A L F O R M I N G
H A N D B O O K
(4)
Bahnhofstr. 41
73033 Göppingen
Germany
Consulting editor: Professor Taylan Altan
Director, Engineering Research Center for Net Shape Manufacturing The Ohio State University, USA
Cataloging-in-Publication Data applied for Die Deutsche Bibliothek – CIP-Einheitsaufnahme
Metal forming handbook / Schuler. – Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer, 1998
Dt. Ausg. u. d. T.: Handbuch der Umformtechnik ISBN 3-540-61185-1
ISBN 3-540-61185-1 Springer-Verlag Berlin Heidelberg New York
This work is subject to copyright.All rights are reserved, whether the whole part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current ver-sion, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prose-cution under the German Copyright Law.
© Springer-Verlag Berlin Heidelberg 1998 Printed in Germany
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Cover design by MEDIO, Berlin
Layout design and data conversion by MEDIO, Berlin
Printing and binding by Konrad Triltsch Druck- und Verlagsanstalt, Würzburg SPIN: 10514857 3020/ 62/ 5 4 3 2 1 0 – Printed on acid-free paper.
(5)
Preface
Fo llo win g t h e lo n g t rad it io n o f t h e Sch u ler Co m p an y, t h e Met al Fo r-m in g Han d bo o k p resen t s t h e scien t ific fu n d ar-m en t als o f r-m et al fo rr-m in g t ech n o lo gy in a way wh ich is bo t h co m p act an d easily u n d erst o o d . Th u s, t h is bo o k m akes t h e t h eo ry an d p ract ice o f t h is field accessible t o t each in g an d p ract ical im p lem en t at io n .
Th e first Sch u ler “Met al Fo rm in g Han d bo o k” was p u blish ed in 1930. Th e last ed it io n o f 1966, alread y revised fo u r t im es, was t ran slat ed in t o a n u m ber o f lan gu ages, an d m et wit h reso u n d in g ap p ro val aro u n d t h e glo be.
O ver t h e last 30 years, t h e field o f fo rm in g t ech n o lo gy h as been rad -ically ch an ged by a n u m ber o f in n o vat io n s. New fo rm in g t ech n iq u es an d ext en d ed p ro d u ct d esign p o ssibilit ies h ave been d evelo p ed an d in t ro d u ced . Th is Met al Fo rm in g Han d bo o k h as been fu n d am en t ally revised t o t ake acco u n t o f t h ese t ech n o lo gical ch an ges. It is bo t h a t ext bo o k an d a referen ce wo rk wh o se in it ial ch ap t ers are co n cern ed t o p ro -vid e a su rvey o f t h e fu n d am en t al p ro cesses o f fo rm in g t ech n o lo gy an d p ress d esign . Th e bo o k t h en go es o n t o p ro vid e an in -d ep t h st u d y o f t h e m ajo r field s o f sh eet m et al fo rm in g, cu t t in g, h yd ro fo rm in g an d so lid fo rm in g. A large n u m ber o f relevan t calcu lat io n s o ffers st at e o f t h e art so lu t io n s in t h e field o f m et al fo rm in g t ech n o lo gy. In p resen t in g t ech -n ical exp la-n at io -n s, p art icu lar em p h asis was p laced o -n easily u -n d er-st an d able grap h ic visu alizat io n . All illu er-st rat io n s an d d iagram s were co m p iled u sin g a st an d ard ized syst em o f fu n ct io n ally o rien t ed co lo r co d es wit h a view t o aid in g t h e read er’s u n d erst an d in g.
It is sin cerely h o p ed t h at t h is Han d bo o k h elp s n o t o n ly d issem in at e sp ecialized kn o wled ge bu t also p ro vid es an im p et u s fo r d ialo gu e bet ween t h e field s o f p ro d u ct io n en gin eerin g, p ro d u ct io n lin e co n -st ru ct io n , t each in g an d research .
(6)
Th is Han d book is th e p rod u ct of d ed icated com m itm en t an d th e wid e ran ge of sp ecialized kn owled ge con tribu ted by m an y em p loyees of th e SCHULER Grou p in close coop eration with Prof. Dr.-In g. H. Hoffm an n an d Dip l.-In g. M. Kasp arbau er of th e utg, In stitu te for Metal Form in g an d Castin g at th e Tech n ical Un iversity of Mu n ich . In close coop eration with th e SCHULER team , th ey h ave created a solid fou n d ation for th e p ractical an d scien tific com p eten ce p resen ted in th is Han d book. We wish to offer ou r sin cere th an ks an d ap p reciation to all th ose in volved . Go ep p in gen , March 1998
Sch u ler Gm bH
(7)
Contributors
ADAM, K., Dip l.-In g. (FH), SMG Sü d d eu tsch e Masch in en bau Gm bH & Co
BAREIS, A., Dip l.-In g. (FH), Sch u ler Pressen Gm bH & Co BIRZER, F., Prof. Dip l.-In g., Fein tool AG
BLASIG, N., Dip l.-In g. (FH), Sch leich er Au tom ation Gm bH & Co
BRANDSTETTER, R., Dip l.-In g. (FH), Sch u ler Pressen Gm bH & Co
BREUER, W., Dip l.-In g., Sch u ler Pressen Gm bH & Co
FRONTZEK, H., Dr.-In g., Sch u ler Gm bH
HOFFMANN, H., Prof. Dr.-In g., Leh rstu h l fü r Um form tech n ik u n d Gieß
e-reiwesen , Tech n isch e Un iversität Mü n ch en
JAROSCH, B., Dip l.-In g. (FH), Sch u ler Pressen Gm bH & Co
KÄSMACHER, H., SMG En gin eerin g fü r In d u striean lagen Gm bH
KASPARBAUER, M., Dip l.-In g., Leh rstu h l fü r Um form tech n ik u n d Gieß erei-wesen , Tech n isch e Un iversität Mü n ch en
KELLENBENZ, R., Dip l.-In g. (FH), Sch u ler Pressen Gm bH & Co
KIEFER, A., Dip l.-In g. (BA), GMG Au tom ation Gm bH & Co KLEIN, P., Gräben er Pressen system e Gm bH & Co. KG KLEMM, P., Dr.-In g., Sch u ler Pressen Gm bH & Co
KNAUß, V., Dip l.-In g. (FH), Sch u ler Werkzeu ge Gm bH & Co
KOHLER, H., Dip l.-In g., Sch u ler Gu ß Gm bH & Co
KÖRNER, E., Dr.-In g., Sch u ler Pressen Gm bH & Co
KUTSCHER, H.-W ., Dipl.-In g. (FH), Gräben er Pressen system e Gm bH & Co. KG LEITLOFF, F.-U., Dr.-In g., Sch äfer Hyd roform in g Gm bH & Co
MERKLE, D., Sch u ler Pressen Gm bH & Co
OSEN, W., Dr.- In g., SMG Sü d d eu tsch e Masch in en bau Gm bH & Co PFEIFLE, P., Dip l.-In g. (FH), Sch u ler Pressen Gm bH & Co
REITMEIER, C., Dip l.-In g., Sch äfer Hyd roform in g Gm bH & Co
REMPPIS, M., In g. grad ., Sch u ler Pressen Gm bH & Co
(8)
SCHÄFER, A.W., Sch äfer Hyd roform in g Gm bH & Co
SCHMID, W ., Dip l.-In g. (FH), Sch u ler Werkzeu ge Gm bH & Co
SCHMITT, K. P., Sch u ler Pressen Gm bH & Co
SCHNEIDER, F., Dip l.-In g. (FH), Sch u ler Pressen Gm bH & Co SIMON, H., Dr.-In g., Sch u ler Werkzeu ge Gm bH & Co
STEINMETZ, M., Dip l.-Wirt.-In g., SMG En gin eerin g fü r In d u striean lagen
Gm bH
STROMMER, K., Dip l.-In g. (FH), Sch u ler Pressen Gm bH & Co
VOGEL, N., Dip l.-In g., Sch leich er Au tom ation Gm bH & Co WEGENER, K., Dr.-In g., Sch u ler Pressen Gm bH & Co
(9)
Contents
In dex o f fo rm ula sy m bo ls . . . XV
1 In tro ductio n . . . . 1
2 Basic prin ciples o f m etal fo rm in g . . . . 5
2 .1 Meth o ds o f fo rm in g an d cuttin g tech n o lo gy . . . 5
2.1.1 Su m m ary . . . 5
2.1.2 Fo rm in g . . . 6
2.1.3 Divid in g . . . 19
2.1.4 Co m bin at io n s o f p ro cesses in m an u fact u rin g . . . 22
2 .2 Basic term s . . . 25
2.2.1 Flo w co n d it io n an d flo w cu rve . . . 25
2.2.2 Defo rm at io n an d m at erial flo w . . . 26
2.2.3 Fo rce an d wo rk . . . 28
2.2.4 Fo rm abilit y . . . 30
2.2.5 Un it s o f m easu rem en t . . . 31
Bibliography . . . 32
3 Fun dam en tals o f press design . . . 33
3 .1 Press ty pes an d press co n structio n . . . 33
3.1.1 Press fram e . . . 34
3.1.2 Slid e d rive . . . 37
3.1.3 Drive syst em s fo r d eep d rawin g p resses . . . 41
(10)
3 .2 Mech an ical presses . . . 49
3.2.1 Det erm in at io n o f ch aract erist ic d at a . . . 49
3.2.2 Typ es o f d rive syst em . . . 54
3.2.3 Drive m o t o r an d flywh eel . . . 60
3.2.4 Clu t ch an d brake . . . 61
3.2.5 Lo n git u d in al an d t ran sverse sh aft d rive . . . 63
3.2.6 Gear d rives . . . 65
3.2.7 Press cro wn assem bly . . . 66
3.2.8 Slid e an d blan k h o ld er . . . 66
3.2.9 Pn eu m at ic syst em . . . 70
3.2.10 Hyd rau lic syst em . . . 71
3.2.11 Lu bricat io n . . . 72
3 .3 Hy draulic presses . . . 73
3.3.1 Drive syst em . . . 73
3.3.2 Hyd rau lic o il . . . 77
3.3.3 Parallelism o f t h e slid e . . . 80
3.3.4 St ro ke lim it at io n an d d am p in g . . . 82
3.3.5 Slid e lo ckin g . . . 83
3 .4 Ch an gin g dies . . . 86
3.4.1 Die h an d lin g . . . 86
3.4.2 Die clam p in g d evices . . . 91
3 .5 Press co n tro l sy stem s . . . 94
3.5.1 Fu n ct io n s o f t h e co n t ro l syst em . . . 94
3.5.2 Elect rical co m p o n en t s o f p resses . . . 94
3.5.3 O p erat in g an d visu alizat io n syst em . . . 95
3.5.4 St ru ct u re o f elect rical co n t ro l syst em s . . . 97
3.5.5 Fu n ct io n al st ru ct u re o f t h e co n t ro l syst em . . . 99
3.5.6 Majo r elect ro n ic co n t ro l co m p o n en t s . . . 99
3.5.7 Arch it ect u re an d h ard ware co n figu rat io n . . . 101
3.5.8 Arch it ect u re o f t h e PLC so ft ware . . . 101
3.5.9 Fu t u re o u t lo o k . . . 102
3 .6 Press safety an d certificatio n . . . 106
3.6.1 Accid en t p reven t io n . . . 106
3.6.2 Legislat io n . . . 107
3.6.3 Eu ro p ean safet y req u irem en t s . . . 107
(11)
3.6.5 Measu res t o be u n d ert aken by t h e u ser . . . 115
3.6.6 Safet y req u irem en t s in t h e USA . . . 117
3 .7 Castin g co m po n en ts fo r presses . . . 120
Bibliography . . . 122
4 Sh eet m etal fo rm in g an d blan kin g . . . 123
4 .1 Prin ciples o f die m an ufacture . . . 123
4.1.1 Classificat io n o f d ies . . . 123
4.1.2 Die d evelo p m en t . . . 128
4.1.3 Die m at erials . . . 142
4.1.4 Cast in g o f d ies . . . 142
4.1.5 Try-o u t eq u ip m en t . . . 148
4.1.6 Tran sfer sim u lat o rs . . . 154
4 .2 Deep draw in g an d stretch draw in g . . . 156
4.2.1 Fo rm in g p ro cess . . . 156
4.2.2 Mat erials fo r sh eet m et al fo rm in g . . . 174
4.2.3 Frict io n , wear an d lu bricat io n d u rin g sh eet m et al fo rm in g . . . 179
4.2.4 Hyd ro -m ech an ical d eep d rawin g . . . 185
4.2.5 Act ive h yd ro -m ech an ical d rawin g . . . 188
4 .3 Co il lin es . . . 194
4 .4 Sh eet m etal fo rm in g lin es . . . 198
4.4.1 Un iversal p resses . . . 198
4.4.2 Pro d u ct io n lin es fo r t h e m an u fact u re o f flat rad iat o r p lat es . . . 208
4.4.3 Lin es fo r sid e m em ber m an u fact u re . . . 210
4.4.4 Dest ackers an d blan k t u rn o ver st at io n s . . . 217
4.4.5 Press lin es . . . 222
4.4.6 Tran sfer p resses fo r sm all an d m ed iu m sized p art s . . . 229
4.4.7 Large-p an el t ri-axis t ran sfer p resses . . . 234
4.4.8 Cro ssbar t ran sfer p resses . . . 243
4.4.9 Presses fo r p last ics . . . 250
4.4.10 St ackin g u n it s fo r fin ish ed p art s . . . 252
4.4.11 Co n t ro l syst em s fo r large-p an el t ran sfer p resses . . 254
XI Contents
(12)
4 .5 Blan kin g pro cesses . . . 268
4 .6 Sh earin g lin es . . . 284
4.6.1 Slit t in g lin es . . . 284
4.6.2 Blan kin g lin es . . . 286
4.6.3 High -sp eed blan kin g lin es . . . 291
4.6.4 Lin es fo r t h e p ro d u ct io n o f elect ric m o t o r lam in at io n s . . . 296
4.6.5 Pro d u ct io n an d p ro cessin g o f t ailo red blan ks . . . . 310
4.6.6 Perfo rat in g p resses . . . 314
4.6.7 Co n t ro l syst em s fo r blan kin g p resses . . . 320
4 .7 Fin e blan kin g . . . 330
4.7.1 Fin e blan kin g p ro cess . . . 330
4.7.2 Fin e blan kin g m at erials, fo rces, q u alit y ch aract erist ics an d p art variet y . . . 338
4.7.3 Fin e blan kin g t o o ls . . . 351
4.7.4 Fin e blan kin g p resses an d lin es . . . 359
4 .8 Ben din g . . . 366
4.8.1 Ben d in g p ro cess . . . 366
4.8.2 Ro ll fo rm in g an d variet y o f sect io n s . . . 373
4.8.3 Ro ller st raigh t en in g . . . 383
4 .9 Organ izatio n o f stam pin g plan ts . . . 389
4.9.1 Design . . . 389
4.9.2 Layo u t . . . 391
4.9.3 Q u alit y assu ran ce t h ro u gh q u alit y co n t ro l . . . 398
Bibliography . . . 403
5 Hy dro fo rm in g . . . 405
5 .1 Gen eral . . . 405
5 .2 Pro cess tech n o lo gy an d ex am ple applicatio n s . . . 405
5.2.1 Pro cess t ech n o lo gy . . . 405
5.2.2 Typ es o f h yd ro fo rm ed co m p o n en t s . . . 408
(13)
5 .3 Co m po n en t dev elo pm en t . . . 413
5.3.1 User-o rien t ed p ro ject m an agem en t . . . 413
5.3.2 Feasibilit y st u d ies . . . 414
5.3.3 Co m p o n en t d esign . . . 416
5 .4 Die en gin eerin g . . . 420
5.4.1 Die layo u t . . . 420
5.4.2 Lu brican t s . . . 422
5 .5 Materials an d prefo rm s fo r pro ducin g h y dro fo rm ed co m po n en ts . . . 423
5.5.1 Mat erials an d h eat t reat m en t . . . 423
5.5.2 Prefo rm s an d p rep arat io n . . . 424
5 .6 Presses fo r h y dro fo rm in g . . . 426
5 .7 Gen eral co n sideratio n s . . . 429
5.7.1 Pro d u ct io n t ech n o lo gy issu es . . . 429
5.7.2 Tech n ical an d eco n o m ic co n sid erat io n s . . . 431
Bibliography . . . 432
6 So lid fo rm in g (Fo rgin g) . . . 433
6 .1 Gen eral . . . 433
6 .2 Ben efits o f so lid fo rm in g . . . 441
6.2.1 Eco n o m ic asp ect s . . . 441
6.2.2 Wo rkp iece p ro p ert ies . . . 443
6 .3 Materials, billet pro ductio n an d surface treatm en t . . . 450
6.3.1 Mat erials. . . 450
6.3.2 Billet o r slu g p rep arat io n . . . 454
6.3.3 Su rface t reat m en t . . . 459
6 .4 Fo rm ed part an d pro cess plan . . . 464
6.4.1 Th e fo rm ed p art . . . 464
6.4.2 Pro cess p lan . . . 467
6 .5 Fo rce an d w o rk requirem en t . . . 469
6.5.1 Fo rward ro d ext ru sio n . . . 469
6.5.2 Fo rward t u be ext ru sio n . . . 474
XIII Contents
(14)
6.5.3 Backward cu p ext ru sio n an d cen t erin g . . . 474
6.5.4 Red u cin g (o p en d ie fo rward ext ru sio n ) . . . 475
6.5.5 Iro n in g . . . 476
6.5.6 Up set t in g . . . 476
6.5.7 Lat eral ext ru sio n . . . 477
6 .6 Part tran sfer . . . 478
6.6.1 Lo ad in g st at io n . . . 479
6.6.2 Tran sfer st u d y . . . 481
6 .7 Die design . . . 485
6.7.1 Die h o ld ers . . . 488
6.7.2 Die an d p u n ch d esign . . . 491
6.7.3 Die an d p u n ch m at erials . . . 496
6.7.4 Die clo sin g syst em s (m u lt ip le-act io n d ies) . . . 502
6 .8 Presses used fo r so lid fo rm in g . . . 505
6.8.1 Ch o ice o f p ress . . . 505
6.8.2 Mech an ical p resses . . . 507
6.8.3 Hyd rau lic p resses . . . 514
6.8.4 Su p p lem en t ary eq u ip m en t . . . 517
6.8.5 Sp ecial feat u res o f h o t an d warm fo rm in g lin es . . 520
6.8.6 Sizin g an d co in in g p resses . . . 522
6.8.7 Min t in g an d co in blan kin g lin es . . . 526
Bibliography . . . 541
(15)
Index of formula symbols
a rib an gle, ben d in g an gle, °
clearan ce an gle, °
d ie o p en in g an gle, °
co rn er an gle fo r blan kin g °
a1 req u ired ben d in g an gle °
a2 d esired ben d in g an gle °
b d raw rat io ,
co rn er an gle wh en ben d in g °
bt o t t o t al d raw rat io bm ax m axim u m d raw rat io
« elo n gat io n , st art in g m easu rem en t
«A relat ive cro ss sect io n ch an ge %
h efficien cy
hA d egree of u tilization of th e sh eet m etal, u tilization force
hF fo rm in g efficien cy fact o r m co efficien t o f frict io n
V vo lu m et ric flo w 1/ s
s st ress N/ m m2
sm m ean st ress N/ m m2
sm ax largest st ress N/ m m2
sm d m ean co m p arat ive st ress N/ m m2
sm in sm allest st ress N/ m m2
sN n o rm al co n t act st ress N/ m m2
sr rad ial st ress N/ m m2
(16)
st t an gen t ial st ress N/ m m2
sv co m p arat ive st ress, effect ive st ress N/ m m2
sz crit ical bu cklin g st ress N/ m m2
s1 great est p rin cip le st ress N/ m m2
s2 m ean p rin cip le st ress N/ m m2
s3 sm allest p rin cip le st ress N/ m m2
tR frict io n al sh ear st ress N/ m m2
w d egree o f d efo rm at io n , st rain , lo garit h m ic/ t ru e st rain
w st rain rat e, d efo rm at io n rat e, d efo rm at io n sp eed wB fract u re st rain
wg p rin cip le d efo rm at io n
w1,w2,w3 d efo rm at io n in m ain d irect io n s
A su rface m m2
a blan kin g p lat e m easu rem en t , rim wid t h , m m leg len gt h d u rin g ben d in g, slo t wid t h m m A0 in it ial su rface, su rface o f blan k cro ss sect io n m m2
a1 blan kin g p u n ch d im en sio n m m
A1 su rface o f blan k cro ss sect io n , en d su rface m m2
A5, A80 u lt im at e elo n gat io n %
AG eject o r su rface, su rface area u n d er p ressu re by
t h e eject o r m m2
aR sp ace bet ween t h e ro ws m m
AS sh eared su rface m m2
ASt cro ss sect io n o f t h e p u n ch , m m2
su rface area o f h o le p u n ch m m2
AZ blan k su rface, area o f t h e blan k m m2
b web wid t h , leg len gt h d u rin g ben d in g, m m
st rip wid t h , sect io n wid t h m m
B d eflect io n m m
bA sh ell-sh ap ed t ear wid t h m m
bE d ie ro ll wid t h m m
bS st rip wid t h m m
c m at erial co efficien t
D blan k d iam et er, p lat e d iam et er, m m
m an d rel d iam et er m m
(17)
d in n er d iam et er, h o le d iam et er, m m
(p erfo rat in g) p u n ch d iam et er m m
d ’ in sid e d iam et er o f bo t t o m d ie m m
d0 blan k d iam et er, in it ial billet d iam et er m m d1 d iam et er o f t h e d raw p u n ch in t h e first d rawin g m m o p erat io n , p u n ch d iam et er, en d d iam et er m m d2 u p p er cu p d iam et er, o u t sid e d iam et er m m
d3 o u t sid e flan ge d iam et er m m
e o ff-cen t er p o sit io n o f fo rce ap p licat io n m m
E elast icit y m o d u le N/ m m2
F fo rce kN
f1, f2, f3 o ffset fact o rs
FA eject io n fo rce kN
FB blan k h o ld er fo rce kN
Fb ben d in g fo rce kN
FG co u n t erfo rce kN
FGa eject io n fo rce kN
FGes t o t al m ach in e fo rce kN
FN n o rm al fo rce kN
FN0 rat ed p ress fo rce, n o m in al lo ad kN
FR rad ial t en sio n fo rce, frict io n fo rce, vee-rin g fo rce kN
FRa st rip p in g fo rce kN
FRe react io n fo rce kN
FS blan kin g fo rce fo r p u n ch wit h flat gro u n d kN
wo rk su rface, sh earin g fo rce kN
FST slid e fo rce kN
Ft t an gen t ial co m p ressio n fo rce kN
FU p ressin g fo rce, fo rm in g fo rce, kN
m axim u m d rawin g fo rce kN
g gravit at io n al accelerat io n m / s2
h fo rm in g p at h , d rawin g st ro ke, d ist an ce, h eigh t , m m
p u n ch d isp lacem en t ; m m
lu bricat io n gap mm
H p lat e t h ickn ess m m
h0 in it ial billet h eigh t , h eigh t o f blan k m m
XVII Index of formular symbols
(18)
h1 fin al h eigh t o f a bo d y aft er co m p ressio n m m h1’ in t erm ed iat e h eigh t , h eigh t o f t h e t ru n cat ed co n e m m
h2 cu p h eigh t m m
hE d ie ro ll h eigh t m m
hG flash h eigh t m m
hR, HR h eigh t o f vee-rin g m m
hS1 sm o o t h cu t sect io n in case o f fract u re % hS2 m in im al sm o o t h cu t sect io n in case o f
sh ell-sh ap ed fract u re %
i sid e cu t t er scrap m m
k co rrect io n fact o r
k2a co rrect io n co efficien t (an gle)
kf flo w st ress N/ m m2
kf0 flo w st ress at t h e st art o f t h e fo rm in g p ro cess N/ m m2
kf1 flo w st ress t o ward s t h e en d o f t h e fo rm in g p ro cess N/ m m2
kfm m ean st abilit y fact o r N/ m m2
kh co rrect io n co efficien t (h eigh t ) kR sp rin gback fact o r
kS sh earin g resist an ce, sh earin g st ren gt h , N/ m m2
relat ive blan kin g fo rce N/ m m2
kw d efo rm at io n resist an ce N/ m m2
kwm m ean d efo rm at io n resist an ce N/ m m2
l rib len gt h m m
L st rip len gt h , m an d rel len gt h m m
la rim len gt h m m
le web len gt h , st rip len gt h m m
lR len gt h o f vee-rin g m m
lS len gt h o f sh eared co n t o u r cu t m m
m m ass, kg
m o d u le o f a gear
Mx eccen t ric m o m en t o f lo ad aro u n d t h e x axis kNm My eccen t ric m o m en t o f lo ad aro u n d t h e y axis kNm
P p erfo rm an ce, d rive p o wer W, kW
p p ressu re N/ m m2
(19)
pG average co m p ressive st ress o n t h e co u n t erp u n ch N/ m m2
pi in t ern al p ressu re N/ m m2
pj co m p ressive st ress at t h e wall o f t h e bo t t o m d ie N/ m m2
pm m ean (h yd rau st at ic) p ressu re N/ m m2
pSt average co m p ressive st ress o n t h e p u n ch , N/ m m2
average fo rm in g p ressu re N/ m m2
qG sp ecific co u n t erfo rce, co u n t erp ressu re N/ m m2
r rad iu s m m
R co rn er rad iu s m m
ra ext ern al rad iu s o f an in sid e co n t o u r m m Ra ext ern al rad iu s o f an o u t sid e co n t o u r m m
ReL lo wer yield st ren gt h N/ m m2
Rp 0,2 co m p ressio n lim it N/ m m2
ri in sid e ben d in g rad iu s, m m
in t ern al rad iu s o f an in sid e co n t o u r m m Ri in t ern al rad iu s o f an o u t sid e co n t o u r m m
ri1 in sid e rad iu s at t h e d ie m m
ri2 in sid e rad iu s at t h e wo rkp iece m m
Rm t en sile st ren gt h o f t h e m at erial N/ m m2
Rt su rface ro u gh n ess mm
Rw ro ller rad iu s m m
Rz su rface ro u gh n ess mm
s sh eet m et al t h ickn ess, wall t h ickn ess, m m
blan k t h ickn ess m m
sR p o sit io n o f t h e cen t er o f fo rce (xs- u n d ys:
co o rd in at es o f t h e fo rce), cen t er o f gravit y m m
t p it ch m m
tw ro ller p it ch m m
u blan kin g clearan ce m m
U sp eed / st ro kin g sp eed , 1/ m in
cu t co n t o u r circu m feren ces, p u n ch p erim et er m m
v co u n t erbalan ce valu e d u rin g ben d in g, m m
co m p en sat io n fact o r m m
V feed st ep , m m
vo lu m e m m3
XIX Index of formular symbols
(20)
V0 st art in g vo lu m e, o verall vo lu m e, p art vo lu m e m m3
V1 in t erm ed iat e vo lu m e, co m p en sat io n valu e m m3
V1’ in t erm ed iat e vo lu m e, co m p en sat io n valu e m m3
V2 in t erm ed iat e vo lu m e, co m p en sat io n valu e m m3
Vd vo lu m e d isp laced d u rin g d efo rm at io n m m3
W d efo rm at io n / fo rm in g wo rk Nm , kNm
J, kJ
w d ie wid t h m m
Wb ben d in g wo rk Nm
Wd d rawin g wo rk o n d o u ble-act io n p resses, Nm , kNm d raw en ergy o f a d o u ble-act io n p ress Nm , kNm We d rawin g wo rk o n sin gle-act io n p resses, Nm , kNm d raw en ergy o f a sin gle-act io n p ress Nm , kNm wid referen ced d eform ation work, sp ecific form in g work Nm m / m m3
WN n o m in al wo rk fo r co n t in u o u s st ro kin g Nm , kNm WS blan kin g wo rk, blan kin g en ergy, sh earin g wo rk Nm , kNm
x co rrect io n fact o r
xs lo cat io n o f t h e resu lt in g blan kin g fo rce
in t h e x d irect io n m m
ys lo cat io n o f t h e resu lt in g blan kin g fo rce
in t h e y d irect io n m m
z n o. of teeth of a gear, n o. of workp ieces
(21)
1 Introduction
Tech n ology h as exerted a far greater in flu en ce on th e d evelop m en t of ou r p ast th an m ost h istory books give cred it for. As late as th e 19th cen -tu ry, craftm an sh ip an d tech n ology were p ractically syn on ym ou s. It is on ly with th e ad ven t of m ech an isation – th rou gh th e u se of m ach in es – th at th e term tech n ology took on a n ew m ean in g of its own .
To d ay, t ech n o lo gy is o n e o f t h e bast io n s o f o u r m o d ern lifest yle an d t h e basis fo r o u r p ro sp erit y, in wh ich m et al fo rm in g t ech n o lo gy p lays a cen t ral ro le. Alo n gsid e t h e m an u fact u re o f sem i-fin ish ed p ro d u ct s t h ro u gh ro llin g, wire d rawin g an d ext ru sio n , t h e p ro d u ct io n o f d iscret e co m p o n en t s u sin g sh eet m et al an d so lid fo rm in g t ech n iq u es is o f m ajo r sign ifican ce. It s field s o f ap p licat io n ran ge fro m au t o m o t ive en gin eerin g, p ro d u ct io n leerin e an d co n t aeerin er co n st ru ct io n t h ro u gh t o t h e bu ild -in g co n st ru ct io n , h o u seh o ld ap p lian ce an d p ackag-in g -in d u st ries.
Th e m ach in e t o o l, wit h it s cap acit y t o p recisely gu id e an d d rive o n e o r m o re t o o ls fo r t h e m ach in in g o f m et al, h as beco m e a sym bo l o f eco -n o m ic m et alwo rki-n g. I-n t h e p ast , t h e wo rk p ro cesses t yp ically see-n i-n m et al fo rm in g t ech n o lo gy u sed t o be execu t ed in a series o f in d ivid u al o p erat io n s o n m an u ally o p erat ed m ach in e t o o ls. To d ay, h o wever, au t o -m at ic p ro d u ct io n cells an d in t erlin ked in d ivid u al -m ach in es t h ro u gh t o t h e co m p act p ro d u ct io n lin e wit h in t egrat ed feed , t ran sp o rt , m o n it o rin g an d frin ish ed p art st ackrin g syst em s are t h e st at e o f t h e art . Develo p -m en t s in t h is field creat ed t h e t ech n o lo gical basis t o allo w t h e ben efit s o f fo rm ed wo rkp ieces, su ch as a m o re favo rable flo w lin e, o p t im u m st ren gt h ch aract erist ics an d lo w m at erial an d en ergy in p u t , t o be co m -bin ed wit h h igh er p ro d u ct io n o u t p u t , d im en sio n al co n t ro l an d su rface q u alit y.
As a rep u ted Germ an m an u factu rer of m ach in e tools, th e com p an y
(22)
o f m o re t h an 150 years: Fro m t h e m an u ally o p erat ed sh eet m et al sh ear t o t h e fu lly au t o m at ic t ran sfer p ress fo r co m p let e car bo d y sid e p an els. O ver t h e m illen n iu m s, t h e h an d wo rkin g o f m et al by fo rm in g reach ed wh at m ay st ill t o d ay be co n sid ered a rem arkable d egree o f skill, resu lt -in g -in t h e creat io n o f m agn ificen t wo rks -in go ld , silver, bro n ze, co p p er an d brass. It was o n ly in aro u n d 1800 t h at iro n sh eet p ro d u ced in ro llin g p lan t s began t o fin d it s way in t o t h e craft sm en ’s wo rksh o p s, req u irin g co m p let ely n ew p ro cessin g t ech n iq u es: In co n t rast t o n o n -ferro u s m et als, t h e m u ch h ard er an d m o re brit t le n ew m at erial co u ld be m o re eco n o m ically wo rked wit h t h e aid o f m ach in es.
In 1839, m ast er lo cksm it h Louis Schuler fo u n d ed a m o d est wo rksh o p co m p risin g p rim arily a t in sm it h ’s sh o p , as well as a blacksm it h ’s fo rge an d a sm it h y. Driven by h is Swabian bu sin ess sen se, h e co n sid ered t h e p o ssibilit ies o p en ed u p by t h e n ewly available, ch eap er iro n sh eet . He was q u ick t o realize t h at t h e in creased in p u t req u ired in t erm s o f p h ys-ical st ren gt h an d wo rkin g t im e, an d t h u s t h e m an u fact u rin g co st s in vo lved in p ro d u cin g t h e fin ish ed art icle were far t o o h igh t o ben efit fro m t h e favo rable p rice o f t h e iro n sh eet it self. St ep by st ep , Louis
Schuler acco rd in gly began t o rep lace m an u al wo rk p ro cesses by m ech an
-ical fixt u res an d d evices. He began t o m ech an ise h is wo rksh o p wit h sh eet sh ears, ben d in g m ach in es an d p ress breaks, wh ich were co n sid er-able in n o vat io n s in t h o se d ays.
In sp ired by t h e Wo rld Exh ibit io n in Lo n d o n in 1851, Louis Schuler d ecid ed t o co n cen t rat e h is act ivit ies en t irely o n p ro d u cin g m ach in es fo r sh eet m et al wo rkin g. His p ro d u ct io n ran ge was co n t in u o u sly ext en d ed t o in clu d e sh eet m et al st raigh t en in g m ach in es, m et al sp in n in g an d levellin g ben ch es, eccen t ric p resses, sp in d le p resses, t u rret , cran k an d d rawin g p resses, bo t h m ech an ically an d h yd rau lically p o wered , n o t ch -in g p resses as well as cu t t -in g an d fo rm -in g t o o ls an d d ies. As early as 1859, h e exp o rt ed h is first sh eet m et al fo rm in g m ach in es.
At t h e en d o f t h e 1870s, Schuler regist ered h is first p at en t fo r “In n o -vat io n s in p u n ch in g d ies, sh ears an d sim ilar”. In 1895, h e p at en t ed “Hyd rau lic d rawin g p resses wit h t wo p ist o n s fit t ed in t o each o t h er”, an d in t h e sam e year was also award ed first p rize at t h e Sh eet Met al In d u st ry Trad e Exh ibit io n in Leip zig. Wit h exp an sio n o f t h e p ro d u ct io n p ro gram , t h e wo rkfo rce as well as t h e co m p an y p rem ises h ad u n d er-go n e co n t in u o u s gro wt h (Fig. 1.1). Th e Sch u ler m ach in e t o o l co m p an y
(23)
was o n e o f t h e fo resigh t ed en t erp rises o f t h e d ay t o p io n eer t h e p ro cess o f d ifferen t iat io n t akin g p lace in t h e field o f m ach in e t o o l en gin eerin g. As a su p p lier o f m ach in es an d p ro d u ct io n lin es fo r in d u st rial m an -u fact -u re – in p art ic-u lar series p ro d -u ct io n – t h e co m p an y’s rep -u t at io n in creased rap id ly.
Th e in creasin g exp o rt vo lu m e an d a co n sist en t p ro cess o f d iversifica-t io n in iversifica-t h e field o f fo rm in g iversifica-t ech n o lo gy led iversifica-t o an early p ro cess o f glo b-alisat io n an d t o t h e d evelo p m en t o f t h e in t ern at io n alSCHULERGro u p o f Co m p an ies.
Th e SCHULERGro u p ’s p ro cess o f glo balisat io n go t u n d er way at t h e begin n in g o f t h e sixt ies wit h t h e fo u n d in g o f fo reign su bsid iaries. To -d ay, SCHULERru n s n o t o n ly eigh t m an u fact u rin g p lan t s in Germ an y bu t also ad d it io n al five p ro d u ct io n facilit ies in Fran ce, t h e US, Brazil an d Ch in a. Alo n gsid e it s wo rld -wid e n et wo rk o f sales agen cies, SCHULERh as also set u p it s o wn sales an d service cen t ers in Sp ain , In d ia, Malaysia an d Th ailan d .
An in t ern at io n allybased n et wo rk o f p ro d u ct io n facilit ies co o rd in at -ed fro m t h e p aren t p lan t in Go ep p in gen p erm it s rap id resp o n se t o t h e ch an ges t akin g p lace in t h e t arget ed m arket s. Pro d u ct io n in o verseas lo cat io n s brin gs abo u t n o t o n ly a red u ct io n in co st s bu t also creat es
3 Introduction
(24)
m ajo r st rat egic ben efit s by in creasin g “lo cal co n t en t ” an d so en su rin g an im p ro ved m arket p o sit io n .
Th e No rt h an d So u t h Am erican m arket s are su p p lied lo cally. Th e NAFTA area is co o rd in at ed by Sch u ler In c. in O h io , wh ile So u t h Am eri-ca’s co m m o n m arket , t h e Merco su l, is su p ervised fro m Brazil. Th e h igh st an d ard o f q u alit y ach ieved by t h e SCHULERp lan t in Brazil h as o p en ed u p even t h e m o st d em an d in g m arket s.
In t h e gro win g m arket o f Ch in a, t h e SCHULERGro u p ru n s t wo jo in t ven t u re co rp o rat io n s in co o p erat io n wit h Ch in ese p art n ers fo r t h e m an -u fact -u re o f m ech an ical p resses an d h yd ra-u lic p resses.
To d ay, we st an d o n t h e t h resh o ld t o a n ew m illen n iu m m arked by in creasin g m arket glo balisat io n an d rap id ly ch an gin g o rgan izat io n al an d p ro d u cin g st ru ct u res. Un d er t h ese rap id ly ch an gin g co n d it io n s, it is SCHULER’swo rkfo rce wh ich rem ain s t h e sin gle m o st im p o rt an t d et er-m in in g fact o r bet ween su ccess an d failu re. Th e t ech n o lo gical o rien t a-t io n o f a-t h e sa-t aff p ro vid es a-t h e in n o vaa-t ive im p ea-t u s wh ich will secu re a-t h e co m p an y’s d evelo p m en t as it m o ves in t o t h e 21st cen t u ry.
Th is Met al Fo rm in g Han d bo o k reflect s t h e t ech n ical co m p et en ce, t h e rich so u rce o f id eas an d t h e creat ivit y o f t h e SCHULERGro u p ’s wo rkfo rce. Th e bo o k t akes an in -d ep t h lo o k at t h e p io n eerin g st age o f d evelo p m en t reach ed by t o d ay’s p resses an d fo rm in g lin es, an d at relat ed p ro d u ct io n p ro cesses, wit h p art icu lar em p h asis o n t h e d evelo p m en t o f co n t ro l en gin eerin g an d au t o m at io n . Develo p m en t s in t h e classical field s o f d esign , m ech an ical en gin eerin g, d yn am ics an d h yd rau lics are n o w bein g in flu en ced t o an ever great er d egree by m o re recen t ly d evelo p ed t ech n o lo gies su ch as CAD, CAM, CIM, m ech at ro n ics, p ro cess sim u la-t io n an d co m p u la-t er-aid ed m easu rem en la-t an d p ro cess co n la-t ro l la-t ech n o lo gy. In t o d ay’s en viro n m en t , t h e m ain o bject ive o f ach ievin g en h an ced p ro d u ct q u alit y an d p ro d u ct ivit y is co u p led wit h lo wer in vest m en t an d o p erat in g co st s. In ad d it io n , q u est io n s o f reliabilit y, u p t im e, accid en t p reven t io n , p ro cess acco u n t in g, eco n o m ical u se o f reso u rces an d en vi-ro n m en t al co n servat io n p lay also a cen t ral vi-ro le.
In view o f t h e fu n d am en t al im p o rt an ce o f m et al fo rm in g t ech n o lo gy t o d ay, t h is Han d bo o k o ffers t h e read er a referen ce wo rk wh o se u sefu l-n ess st ret ch es t o p ract ically every bral-n ch o f il-n d u st ry. Th e bo o k p ro vid es an in d ep t h an alysis o f m o st o f t h e im p o rt an t m an u fact u rin g t ech -n o lo gies as a syst em co m p risi-n g t h e t h ree elem e-n t s: p ro cess, p ro d u ct io -n lin e an d p ro d u ct .
(25)
2 Basic principles of metal forming
2.1 M ethods of forming and cutting technology
2.1.1 Summary
As d escribed in DIN 8580, m an u fact u rin g p ro cesses are classified in t o six m ain gro u p s: p rim ary sh ap in g, m at erial fo rm in g, d ivid in g, jo in in g, m o d ifyin g m at erial p ro p ert y an d co atin g (Fig. 2.1.1).
Prim ary shaping is th e creation of an in itial sh ap e from th e m olten ,
gaseou s or form less solid state. Divid in g is th e local sep aration of m ate-rial. Join in g is th e assem bly of in d ivid u al workp ieces to create su b-assem blies an d also th e fillin g an d satu ration of p orou s workp ieces. Coatin g m ean s th e ap p lication of th in layers on com p on en ts, for exam -p le by galvan ization , -p ain tin g an d foil wra-p -p in g. Th e -p u r-p ose of m od i-fyin g m aterial p rop erty is to alter m aterial ch aracteristics of a workp iece
coating dividing
joining
modifying material property
primary shaping
forming
Fig. 2.1.1
(26)
to ach ieve certain u sefu l p rop erties. Su ch p rocesses in clu d e h eat treat-m en t p rocesses su ch as h ard en in g or recrystallization an n ealin g.
Form ing – as t h e t ech n o lo gy fo rm in g t h e cen t ral su bject m at t er o f t h is
bo o k – is d efin ed by DIN 8580 as m an u fact u rin g t h ro u gh t h e t h ree-d im en sio n al o r p last ic m o ree-d ificat io n o f a sh ap e wh ile ret ain in g it s m ass an d m at erial co h esio n . In co n t rast t o d efo rm at io n , fo rm in g is t h e m o d -ificat io n o f a sh ap e wit h co n t ro lled geo m et ry. Fo rm in g p ro cesses are cat ego rized as ch ip less o r n o n -m at erial rem o val p ro cesses.
In p ract ice, t h e field o f “fo rm in g t ech n o lo gy” in clu d es n o t o n ly t h e m ain cat ego ry o f fo rm in g bu t also su bt o p ics, t h e m o st im p o rt an t o f wh ich are dividing an d joining through form ing (Fig. 2.1.2). Co m bin at io n s wit h o t h er m an u fact u rin g p ro cesses su ch as laser m ach in in g o r cast in g are also u sed .
2.1.2 Forming
Fo rm in g t ech n iq u es are classified in acco rd an ce wit h DIN 8582 d ep en d in g o n t h e m ain d irect io n o f ap p lied st ress (Fig. 2.1.3):
– fo rm in g u n d er co m p ressive co n d it io n s,
– fo rm in g u n d er co m bin ed t en sile an d co m p ressive co n d it io n s, – fo rm in g u n d er t en sile co n d it io n s,
– fo rm in g by ben d in g,
– fo rm in g u n d er sh ear co n d it io n s.
fo rm in g un de r c om pr es si ve co nd iti on s fo rm in g un de r s he ar c on di tio ns fo rm in g un de r c om pr es si ve an d te ns ile c on di tio ns fo rm in g un de r t en si le c on di tio ns
forming parting joining
fo rm in g by be nd in g jo in in g th ro ug h fo rm in g di vi di ng Fig. 2.1.2 Production processes used in the field of forming technology
(27)
Th e DIN st an d ard d ifferen t iat es bet ween 17 d ist in ct fo rm in g p ro cesses acco rd in g t o t h e relat ive m o vem en t bet ween d ie an d wo rkp iece, d ie geo m et ry an d wo rkp iece geo m et ry (Fig. 2.1.3).
Form ing under com pressive conditions
Cast slabs, ro d s an d billet s are fu rt h er p ro cessed t o sem ifin ish ed p ro d -u ct s by rolling. In o rd er t o keep t h e req -u ired ro llin g fo rces t o a m in i-m u i-m , fo ri-m in g is p erfo ri-m ed in it ially at h o t fo ri-m in g t ei-m p erat u re. At t h ese t em p erat u res, t h e m at erial h as a m alleable, p ast e-like an d easily fo rm able co n sist en cy wh ich p erm it s a h igh d egree o f d efo rm at io n wit h o u t p erm an en t wo rk h ard en in g o f t h e m at erial. Ho t fo rm in g can be u sed t o p ro d u ce flat m at erial o f t h e t yp e req u ired fo r t h e p ro d u ct io n o f sh eet o r p lat e, bu t also fo r t h e p ro d u ct io n o f p ip e, wire o r p ro files. If t h e t h ickn ess o f ro lled m at erial is belo w a cert ain m in im u m valu e, an d wh ere p art icu larly st rin gen t d em an d s are im p o sed o n d im en sio n al ac-cu racy an d su rface q u alit y, p ro cessin g is p erfo rm ed at ro o m t em p era-t u re by co ld ro llin g. In ad d iera-t io n era-t o ro llin g sem i-fin ish ed p ro d u cera-t s, su ch as sh eet an d p lat e, gears an d t h read s o n d iscret e p art s are also ro lled u n d er co m p ressive st ress co n d it io n s.
Open die form ing is t h e t erm u sed fo r co m p ressive fo rm in g u sin g t o o ls
wh ich m o ve t o ward s each o t h er an d wh ich co n fo rm eit h er n o t at all o r o n ly p art ially t o t h e sh ap e o f t h e wo rkp iece. Th e sh ap e o f t h e wo rk-p iece is creat ed by t h e execu t io n o f a free o r d efin ed relat ive m o vem en t
7 M ethods of forming and cutting technology
forming under compres-sive conditions DIN 8583
forming under compres-sive and tensile conditions DIN 8584
forming under tensile conditions DIN 8585
forming under shearing conditions DIN 8587 forming by bending
DIN 8586 forming ro lli ng op en d ie fo rm in g cl os ed d ie fo rm in g co in in g st rip pi ng de ep d ra w in g fla ng in g sp in ni ng w rin kl e bu lg in g ex te nd in g by s tr et ch in g ex pa nd in g di sp la ce m en t tw is tin g st re tc h fo rm in g be nd in g w ith li ne ar di e m ov em en t be nd in g w ith ro ta ry di e m ov em en t fo rm in g by fo rc in g th ro ug h an o rif ic e
(28)
bet ween t h e wo rkp iece an d t o o l sim ilar t o t h at u sed in t h e h am m er fo rgin g p ro cess (Fig. 2.1.4).
Closed die form ing is a co m p ressive fo rm in g p ro cess, wh ere sh ap ed
t o o ls (d ies) m o ve t o ward s each o t h er, wh ereby t h e d ie co n t ain s t h e wo rkp iece eit h er co m p let ely o r t o a co n sid erable ext en t t o creat e t h e fin al sh ap e (Fig. 2.1.5).
Coining is co m p ressive fo rm in g u sin g a d ie wh ich lo cally p en et rat es
a wo rkp iece. A m ajo r ap p licat io n wh ere t h e co in in g p ro cess is u sed is in m an u fact u rin g o f co in s an d m ed allio n s (Fig. 2.1.6).
Form ing by forcing through an orifice is a form in g tech n iq u e wh ich
in volves th e com p lete or p artial p ressin g of a m aterial th rou gh a form in g d ie o rifice t o o bt ain a red u ced cro ss-sect io n o r d iam et er. Th is t ech n iq u e in clu d es t h e su bcat ego ries free extrusion, extrusion of sem i-finished
prod-ucts and extrusion of com ponents (cf. Sect . 6.1).
die w orkpiece
Fig. 2.1.4 Open die forming
upper die w orkpiece
(29)
Du rin g free extrusion, a billet is p art ially red u ced wit h o u t u p set t in g o r bu lgin g o f t h e n o n -fo rm ed p o rt io n o f t h e wo rkp iece (Fig. 2.1.7 an d cf. Sect . 6.5.4). Free ext ru sio n o f h o llo w bo d ies o r t ap erin g by free ext ru -sio n in vo lves p art ial red u ct io n o f t h e d iam et er o f a h o llo w bo d y, fo r exam p le a cu p , a can o r p ip e, wh ereby an ext ru sio n co n t ain er m ay be req u ired d ep en d in g o n t h e wall t h ickn ess.
In extrusion of sem ifinished products a h eat ed billet is p laced in a co n
-t ain er an d p u sh ed -t h ro u gh a d ie o p en in g -t o p ro d u ce so lid o r h o llo w ext ru sio n s o f d esired cro ss-sect io n .
Cold extrusion of discrete parts in vo lves fo rm in g a wo rkp iece lo cat
-ed bet ween sect io n s o f a d ie, fo r exam p le a billet o r sh eet blan k (cf.
Sect s. 6.5.1 t o 6.5.3 an d 6.5.7). In co n t rast t o free ext ru sio n , larger d efo rm at io n s are p o ssible u sin g t h e ext ru sio n m et h o d .
9 M ethods of forming and cutting technology
embossing punch
w orkpiece
Fig. 2.1.6 Coining
punch w orkpiece press bush
Fig. 2.1.7 Free extrusion of shafts
(30)
Ext ru sio n is u sed fo r t h e m an u fact u re o f sem i-fin ish ed it em s su ch as lo n g p ro files wit h co n st an t cro ss sect io n s. Co ld ext ru sio n is u sed t o p ro -d u ce in -d ivi-d u al co m p o n en t s, e. g. gears o r sh aft s. In bo t h m et h o -d s, fo rm in g t akes p lace u sin g eit h er rigid d ies o r act ive m ed ia. In ad d it io n , a d ifferen ce is d rawn d ep en d in g o n t h e d irect io n o f m at erial flo w re-lat ive t o t h e p u n ch m o vem en t – i. e. fo rward s, backward s o r re-lat eral – an d t h e m an u fact u re o f so lid o r h o llo w sh ap es (cf. Fig. 6.1.1). Based o n
t h e co m bin at io n o f t h ese d ifferen t iat in g feat u res, in acco rd an ce wit h DIN 8583/ 6 a t o t al o f 17 p ro cesses exist fo r ext ru sio n . An exam p le o f a m an u fact u rin g m et h o d fo r can s o r cu p s m ad e fro m a so lid billet is back-ward cu p ext ru sio n (Fig. 2.1.8).
Form ing under com bination of tensile and com pressive conditions
Drawing is carried o u t u n d er t en sile an d co m p ressive co n d it io n s an d
in vo lves d rawin g a lo n g wo rkp iece t h ro u gh a red u ced d ie o p en in g. Th e m o st sign ifican t su bcat ego ry o f d rawin g is strip drawing. Th is in vo lves d rawin g t h e wo rkp iece t h ro u gh a clo sed d rawin g t o o l (d rawin g d ie, lo wer d ie) wh ich is fixed in d rawin g d irect io n . Th is allo ws t h e m an u -fact u re o f bo t h so lid an d h o llo w sh ap es. In ad d it io n t o t h e m an u -fact u re o f sem i-fin ish ed p ro d u ct s su ch as wires an d p ip es, t h is m et h o d also p erm it s t h e p ro d u ct io n o f d iscret e co m p o n en t s. Th is p ro cess in vo lves red u cin g t h e wall t h ickn ess o f d eep -d rawn o r ext ru d ed h o llo w cu p s by iro n in g, an d h as t h e effect o f m in im izin g t h e m at erial in p u t , p art icu -larly fo r p ressu re co n t ain ers, wit h o u t alt erin g t h e d im en sio n s o f t h e can bo t t o m (Fig. 2.1.9 an d cf. Sect . 6.5.5).
punch w orkpiece press bush blank
ejector
Fig. 2.1.8 Backw ard can extrusion
(31)
Deep drawing is a m et h o d o f fo rm in g u n d er co m p ressive an d t en sile
co n d it io n s wh ereby a sh eet m et al blan k is t ran sfo rm ed in t o a h o llo w cu p , o r a h o llo w cu p is t ran sfo rm ed in t o a sim ilar p art o f sm aller d im en -sion s with ou t an y in ten tion of alterin g th e sh eet th ickn ess (cf.Sect. 4.2.1). Usin g t h e single-draw deep drawing technique it is p o ssible t o p ro d u ce a d rawn p art fro m a blan k wit h a sin gle wo rkin g st ro ke o f t h e p ress
(Fig. 2.1.10).
In case o f large d efo rm at io n s, t h e fo rm in g p ro cess is p erfo rm ed by
m eans of redrawing, gen erally u sin g a n u m ber o f d rawin g o p erat io n s.
Th is can be p erfo rm ed in t h e sam e d irect io n by m ean s o f a t elesco p ic p u n ch (Fig. 2.1.11) o r by m eans of reverse drawing, wh ich in vo lves t h e
seco n d p u n ch act in g in o p p o sit e d irect io n t o t h e p u n ch m o t io n o f t h e p revio u s d eep -d rawin g o p erat io n (Fig. 2.1.12).
11 M ethods of forming and cutting technology
punch
w orkpiece sinking die
Fig. 2.1.9 Can ironing
punch blank holder
blank draw n part die
(32)
Th e m o st sign ifican t variat io n o f d eep d rawin g is d o n e wit h a rigid t o o l (Fig. 2.1.10). Th is co m p rises a p u n ch , a bo t t o m d ie an d a blan k
h o ld er, wh ich is in t en d ed t o p reven t t h e fo rm at io n o f wrin kles as t h e m et al is d rawn in t o t h e d ie. In sp ecial cases, t h e p u n ch o r d ie can also be fro m a so ft m at erial.
Th ere are d eep d rawin g m et h o d s wh ich m ake u se o f act ive m ed ia an d act ive en ergy. Deep d rawin g u sin g act ive m ed ia is t h e d rawin g o f a blan k o r h o llo w bo d y in t o a rigid d ie t h ro u gh t h e act io n o f a m ed iu m . Act ive m ed ia in clu d e fo rm less so lid su bst an ces su ch as san d o r st eel balls, flu id s (o il, wat er) an d gases, wh ereby t h e fo rm in g wo rk is p er-fo rm ed by a p ress u sin g a m et h o d sim ilar t o t h at em p lo yed wit h t h e rigid t o o ls. Th e great est field o f ap p licat io n o f t h is t ech n iq u e is
hydro-m echanical drawing, fo r exahydro-m p le fo r t h e hydro-m an u fact u re o f co hydro-m p o n en t s
fro m st ain less st eel (Fig. 2.1.13, cf. Sect s. 4.2.4 an d 4.2.5).
punch for 2 drawnd
punch for 1 draw as blank holder for redraw
st
initial hollow body
2 draw n partnd
die
Fig. 2.1.11 M ultiple-draw deep draw ing w ith telescopic punch
die for 1 drawst
blank holder for 1 drawst
punch for1 draw as die for reverse draw
st
blank holder for reverse draw
punch for reverse draw
(33)
Flanging is a m et h o d o f fo rm in g u n d er co m bin ed co m p ressive an d
t en sile co n d it io n s u sin g a p u n ch an d d ie t o raise clo sed rim s (flan ges o r co llars) o n p ierced h o les (Fig. 2.1.14). Th e h o les can be o n flat o r o n
cu rved su rfaces. Flan ges are o ft en p ro vid ed wit h fem ale t h read s fo r t h e p u rp o se o f assem bly.
Spinning is a co m bin ed co m p ressive an d t en sile fo rm in g m et h o d u sed
t o t ran sfo rm a sh eet m et al blan k in t o a h o llo w bo d y o r t o ch an ge t h e p erip h ery o f a h o llo w bo d y. O n e t o o l co m p o n en t (sp in n in g m an d rel, sp in n in g bu sh ) co n t ain s t h e sh ap e o f t h e wo rkp iece an d t u rn s wit h t h e wo rkp iece, wh ile t h e m at in g t o o l (ro ll h ead ) en gages o n ly lo cally
(Fig. 2.1.15). In co n t rast t o sh ear fo rm in g, t h e in t en t io n o f t h is p ro cess
is n o t t o alt er t h e sh eet m et al t h ickn ess.
W rinkle bulging o r u p set bu lgin g is a m et h o d o f co m bin ed t en sile an d
co m p ressive fo rm in g fo r t h e lo cal exp an sio n o r red u ct io n o f a gen eral-ly t u bu lar sh ap ed p art . Th e p ressu re fo rces exert ed in t h e lo n git u d in al d irect io n resu lt in bu lgin g o f t h e wo rkp iece t o ward s o u t sid e, in sid e o r in lat eral d irect io n (Fig. 2.1.16).
13 M ethods of forming and cutting technology
punch blank holder
seal
pressure medium container pressure medium w orkpiece
Fig. 2.1.13 Hydromechanical deep draw ing
punch blank holder
w orkpiece
die
(34)
Form ing under tensile conditions
Extending by stretching is a m et h o d o f t en sile fo rm in g by m ean s o f a t en
-sile fo rce ap p lied alo n g t h e lo n git u d in al axis o f t h e wo rkp iece. St ret ch fo rm in g is u sed t o in crease t h e wo rkp iece d im en sio n in t h e d irect io n o f fo rce ap p licat io n , fo r exam p le t o ad ju st t o a p rescribed len gt h . Ten sile t est is also a p u re st ret ch in g p ro cess. St raigh t en in g by st ret ch in g is t h e p ro cess o f ext en d in g fo r st raigh t en in g ro d s an d p ip es, as well as elim i-n at ii-n g d ei-n t s ii-n sh eet m et al p art s.
spinning mandrel
spinning roller circular blank w orkpiece
Fig. 2.1.15 Spinning a hollow body
pressure ring
w orkpiece
punch
container
ejector
(35)
Exp an d in g is t en sile fo rm in g t o en large t h e p erip h ery o f a h o llo w bo d y. As in case o f d eep d rawin g, rigid (Fig. 2.1.17) as well as so ft t o o ls,
act ive m ed ia an d act ive en ergies are also u sed .
Stretch form ing is a m et h o d o f t en sile fo rm in g u sed t o im p art im p
res-sio n s o r cavit ies in a flat o r co n vex sh eet m et al p art , wh ereby su rface en largem en t – in co n t rast t o d eep d rawin g – is ach ieved by red u cin g t h e t h ickn ess o f t h e m et al.
Th e m o st im p o rt an t ap p licat io n fo r st ret ch fo rm in g m akes u se o f a rigid d ie. Th is t yp e o f p ro cess in clu d es also stretch drawing an d em
boss-ing. St ret ch d rawin g is t h e creat io n o f an im p ressio n in a blan k u sin g
a rigid p u n ch wh ile t h e wo rkp iece is clam p ed firm ly aro u n d t h e rim
(Fig. 2.1.18). Em bo ssin g is t h e p ro cess o f creat in g an im p ressio n u sin g a
p u n ch in a m at in g t o o l, wh ereby t h e im p ressio n o r cavit y is sm all in co m p ariso n t o t h e o verall d im en sio n o f t h e wo rkp iece (Fig. 2.1.19).
15 M ethods of forming and cutting technology
mandrel
w orkpiece
collet
punch
w orkpiece s
s1
1 0
0
s < s
Fig. 2.1.18 Stretch forming
(36)
Form ing by bending
In bending with a linear die m ovem ent t h e d ie co m p o n en t s m o ve in a st raigh t lin e (cf. Sect . 4.8.1). Th e m o st im p o rt an t p ro cess in t h is su b-cat ego ry is die bending, in wh ich t h e sh ap e o f t h e p art is im p act ed by t h e d ie geo m et ry an d t h e elast ic reco very (Fig. 2.1.20). Die ben d in g can be
co m bin ed wit h d ie co in in g in a sin gle st ro ke. Die co in in g is t h e rest rik-in g o f ben t wo rkp ieces t o relieve st resses, fo r exam p le rik-in o rd er t o red u ce t h e m agn it u d e o f sp rin gback.
Bending with rotary die m ovem ent in clu d es ro ll ben d in g, swivel ben d
-in g an d circu lar ben d -in g. Du r-in g ro ll ben d -in g, t h e ben d -in g m o m en t is ap p lied by m ean s o f ro llin g. Usin g t h e ro ll ben d in g p ro cess, it is p o ssi-ble t o m an u fact u re cylin d rical o r t ap ered wo rkp ieces (Fig. 2.1.21). Th e
ro ll ben d in g p ro cess also in clu d es ro ll st raigh t en in g t o elim in at e u n d e-sirable d efo rm at io n s in sh eet m et al, wire, ro d s o r p ip es (Fig. 2.1.22an d cf. Sect . 4.8.3) as well as co rru gat in g an d ro ll fo rm in g (Fig. 2.1.23 an d cf. Sect . 4.8.2).
punch
die w orkpiece
Fig. 2.1.19 Embossing
punch w orkpiece bending die
U die V die Fig. 2.1.20 Die bending
(37)
Swivel bending is ben d in g u sin g a t o o l wh ich fo rm s t h e p art aro u n d
t h e ben d in g ed ge (Fig. 2.1.24). Circular bending is a co n t in u o u s p ro cess
o f ben d in g wh ich p ro gresses in t h e d irect io n o f t h e sh an k u sin g st rip , p ro file, ro d , wire o r t u bes (Fig. 2.1.25). Circu lar ben d in g at an an gle
great er t h an 360°, fo r exam p le is u sed in t h e p ro d u ct io n o f sp rin gs an d is called co ilin g.
Form ing under shear conditions
Displacem ent is a m et h o d o f fo rm in g wh ereby ad jacen t cro ss-sect io n s o f
t h e wo rkp iece are d isp laced p arallel t o each o t h er in t h e fo rm in g zo n e by a lin ear d ie m o vem en t (Fig. 2.1.26). Disp lacem en t alo n g a clo sed d ie
ed ge can be u sed fo r exam p le fo r t h e m an u fact u re o f weld in g bo sses an d cen t erin g in d en t at io n s in sh eet m et al co m p o n en t s.
17 M ethods of forming and cutting technology
w orkpiece straightening rollers
Fig. 2.1.22 Roll straightening
w orkpiece rollers
(38)
Twisting is a m et h o d o f fo rm in g u n d er sh earin g co n d it io n s in wh ich
ad jacen t cro ss-sect io n al su rfaces o f t h e wo rkp ieces are d isp laced relat ive t o each o t h er by a ro t ary m o vem en t (Fig. 2.1.27).
Fig. 2.1.23 Roll forming
clamping jaw s
w orkpiece cheek
Fig. 2.1.24 Sw ivel bending
w orkpiece support w orkpiece bending mandrel
(39)
2.1.3 Dividing
Dividing is t h e first su bgro u p u n d er t h e h ead in g o f p art in g, bu t is gen
-erally cat ego rized as a “fo rm in g t ech n iq u e” sin ce it is o ft en u sed wit h o t h er co m p lem en t ary p ro d u ct io n p ro cesses (cf. Fig. 2.1.2). Acco rd in g
t o t h e d efin it io n o f t h e t erm , d ivid in g is t aken t o m ean t h e m ech an ical sep arat io n o f wo rkp ieces wit h o u t t h e creat io n o f ch ip s (n o n cu t -t in g). Acco rd in g -t o DIN 8588, -t h e d ivid in g ca-t ego ry in clu d es -t h e su b-cat ego ries sh ear cu t t in g, wed ge-act io n cu t t in g, t earin g an d breakin g
(Fig. 2.1.28). O f t h ese, t h e sh ear cu t t in g is t h e m o st im p o rt an t in in d u
s-t rial ap p licas-t io n .
19 M ethods of forming and cutting technology
punch
w orkpiece blank holder
Fig. 2.1.26 Displacement
ϕ
w orkpiece
MT
(40)
Shear cutting – kn o wn in p ract ice as sh earin g fo r sh o rt – is t h e sep
ara-t io n o f wo rkp ieces beara-t ween ara-t wo cu ara-t ara-t in g ed ges m o vin g p asara-t each o ara-t h er (Fig. 2.1.29an d cf. Sect . 4.5).
Du rin g sin gle-stroke sh earin g, th e m aterial sep aration is p erform ed alon g th e sh earin g lin e in a sin gle stroke, in m u ch th e sam e way as u sin g a com p ou n d cu ttin g tool. Nibblin g, in con trast, is a p rogressive, m u lti-p le-stroke cu ttin g lti-p rocess u sin g a cu ttin g lti-p u n ch d u rin g wh ich sm all waste p ieces are sep arated from th e workp iece alon g th e cu ttin g lin e.
Fine blanking is a sin gle-st ro ke sh earin g m et h o d t h at u ses an an n u lar
serrat ed blan k h o ld er an d a co u n t erp ressu re p ad . Th u s t h e gen erat ed blan ked su rface is free o f an y in cip ien t bu rrs o r flaws, wh ich is fre-q u en t ly u sed as a fu n ct io n al su rface (Fig. 2.1.30 an d cf. Sect . 4.7).
parting
dividing
breaking tearing
w edge-action cutting shear cutting
Fig. 2.1.28 Parting techniques classified under forming
open shearing blanking contour punch
die
(41)
W edge-action cutting o f wo rkp ieces is gen erally p erfo rm ed u sin g a
wed ge-sh ap ed cu t t in g ed ge. Th e wo rkp iece is d ivid ed bet ween t h e blad e an d a su p p o rt in g su rface. Bit e cu t t in g is a m et h o d u sed t o d ivid e a wo rkp iece u sin g t wo wed ge-sh ap ed blad es m o vin g t o ward s each o t h er. Th is cu t t in g m et h o d is em p lo yed by cu t t in g n ip p ers o r bo lt cu t t ers
(Fig. 2.1.31).
Th e p ro cesses tearing an d breaking su bject t h e wo rkp iece eit h er t o t en -sile st ress o r ben d in g o r ro t ary st ress beyo n d it s u lt im at e breakin g o r t en sile st ren gt h .
21 M ethods of forming and cutting technology
die counterpunch
punch
serrated ring annular serrated blank holder
Fig. 2.1.30 Fine blanking
w orkpiece tool
(42)
2.1.4 Combinations of processes in manufacturing
Vario u s co m bin at io n s o f d ifferen t fo rm in g p ro cesses o r co m bin at io n s o f fo rm in g, cu t t in g an d jo in in g p ro cesses h ave been fo u n d t o be su c-cessfu l o ver m an y years.
Stretch drawing and deep drawing, fo r exam p le, assu m e an im p o rt an t
ro le in t h e sh eet m et al p ro cessin g in d u st ry (cf.Sect . 4.2.1). Du rin g st ret ch d rawin g, t h e blan k is p reven t ed fro m slid in g in t o t h e d ie u n d er t h e blan k h o ld er by m ean s o f a lo ckin g bead an d bead in g ro d s o r by ap p lyin g a su fficien t ly h igh blan k h o ld er fo rce (Fig. 2.1.32). As a resu lt ,
t h e blan k is su bject ed t o t en sile st ress d u rin g p en et rat io n o f t h e p u n ch . So t h e sh eet m et al t h ickn ess is red u ced .
Deep d rawin g, in co n t rast , is a p ro cess o f fo rm in g u n d er co m bin ed t en sile an d co m p ressio n co n d it io n s in wh ich t h e sh eet is fo rm ed u n d er t an gen t ial co m p ressive st ress an d rad ial t en sile st ress wit h o u t an y in t en t io n t o alt er t h e t h ickn ess o f t h e sh eet m et al (cf. Fig. 4.2.1).
Fo r exam p le wh en d rawin g co m p lex bo d y p an els fo r a p assen ger car, st ret ch d rawin g an d d eep d rawin g m ay be co n d u ct ed sim u lt an eo u sly. Th e t o o l co m p rises a p u n ch , d ie an d blan k h o ld er (Fig. 2.1.32). Th e
blan k h o ld er is u sed d u rin g st ret ch d rawin g t o act as a brake o n t h e m et -al, an d d u rin g d eep d rawin g t o p reven t t h e fo rm at io n o f wrin kles.
Mo d ern p ressin g t ech n iq u es t o d ay p erm it t h e d esired m o d ificat io n o f t h e blan k h o ld er fo rce d u rin g t h e d rawin g st ro ke. Th e blan k h o ld er fo rces can be ch an ged in d ep en d en t ly at vario u s lo cat io n s o f t h e blan k h o ld er d u rin g t h e d rawin g st ro ke. Th e blan k is in sert ed in t h e d ie an d clam p ed by t h e blan k h o ld er. Th e fo rm in g p ro cess begin s wit h p en et
ra-draw ing w ith blank holder stretch forming deep ra-draw ing
+ =
punch blank holder blank die
FBl FBl FBl FBl
FSt FSt
s0 s0 s0
s0
s1
(43)
t io n o f t h e p u n ch t o p erfo rm a st ret ch d rawin g p ro cess in wh ich t h e wall t h ickn ess o f t h e st ret ch ed blan k is red u ced . Th e bo t t o m o f t h e d rawn p art is su bseq u en t ly fo rm ed .
Th e d eep d rawin g p ro cess begin s o n ce t h e req u ired blan k h o ld in g fo rce h as been red u ced t o t h e ext en t t h at t h e blan k m at erial is able t o flo w wit h o u t gen erat in g wrin kles o ver t h e ro u n d ed sect io n s o f t h e d ie. At t h e en d o f t h e d rawin g p ro cess, t h e blan k h o ld er fo rce is freq u en t ly in creased again in o rd er t o o bt ain a rep ro d u cible fin al geo m et ry by resp ect in g t h e st ret ch in g p o rt io n o f t h e d rawin g st ro ke.
In ad d it io n t o d eep d rawin g, bo d y p an els are ad d it io n ally p ro cessed in t h e st am p in g p lan t by fo rm in g u n d er ben d in g, co m p ressive an d sh earin g co n d it io n s. A ch aract erist ic o f t h e bending p ro cess is t h at a cam ber is fo rced o n t h e wo rkp iece in vo lvin g an gu lar ch an ges an d swiv-el m o t io n s bu t wit h o u t an y ch an ge in t h e sh eet t h ickn ess. Th e sp rin g-back o f t h e m at erial resu lt in g fro m it s elast ic p ro p ert ies is co m p en sat ed for by overben d in g (cf.Sect. 4.8.1). An oth er p ossibility for obtain in g d im en sion ally p recise workp ieces is to com bin e com p ressive stresses with in tegrated restrikin g of th e workp iece in th e area of th e bottom d ead cen ter of th e slid e m ovem en t.
Form ing is alm o st always co m bin ed wit h cutting. Th e blan k fo r a sh eet
m et al p art is cu t o u t o f co il st o ck p rio r t o fo rm in g. Th e fo rm in g p ro cess is fo llo wed by t rim m in g, p iercin g o r cu t -o u t o f p art s (cf.Sect . 4.1.1).
If n eit h er t h e cu t t in g n o r t h e fo rm in g p ro cess d o m in at es t h e p ro -cessin g o f a sh eet m et al p art , t h is co m bin at io n o f m et h o d s is kn o wn as
blanking. W h ere great er p iece n u m bers are p ro d u ced , fo r m o st sm all
an d m ed iu m -sized p u n ch ed p art s a p ro gressive t o o l is u sed , fo r exam p le in t h e case o f fin e-ed ge blan kin g (cf.Sect . 4.7.3). Ho wever, so lid fo rm -in g p ro cesses o ft en also co m b-in e a n u m ber o f d ifferen t t ech n iq u es -in a sin gle set o f d ies (cf.Sect . 6.1).
Th e call fo r great er co st red u ct io n s d u rin g p art m an u fact u re h as bro u gh t abo u t t h e in t egrat io n o f ad d it io n al p ro d u ct io n t ech n iq u es in t h e fo rm in g p ro cess. St ackin g an d assem bly o f p u n ch ed p art s, fo r exam -p le, co m bin es n o t o n ly t h e classical blan kin g an d fo rm in g -p ro cesses bu t also jo in in g fo r t h e m an u fact u re o f fin ish ed st at o r an d ro t o r assem -blies fo r t h e elect ric m o t o r in d u st ry (Fig. 2.1.33, cf. Fig. 4.6.22 an d
4.6.23). Sh eet m et al p art s can also be jo in ed by m ean s o f fo rm in g, by
t h e so -called h em m in g o r flan gin g (Fig. 2.1.34).
23 M ethods of forming and cutting technology
(44)
Dividing, coating and m odifying m aterial property technologies will su
bst an t ially exp an d t h e field o f ap p licat io n co vered by fo rm in g t ech n o lo gy in t h e fu t u re. Th is will allo w fin ish p ro cessin g in o n ly a sm all n u m -ber o f st at io n s, wh ere p o ssible in a sin gle lin e, an d will red u ce co st s fo r h an d lin g an d lo gist ics t h ro u gh o u t t h e p ro d u ct io n seq u en ce.
Fig. 2.1.33 Joining by parting
Fig. 2.1.34
(45)
2 Basic principles of metal forming
2.2 Basic terms
2.2.1 Flow condition and flow curve
Met allic m at erials m ay be sh ap ed by ap p lyin g ext ern al fo rces t o t h em wit h o u t red u cin g t h eir st ru ct u ral co h esio n . Th is p ro p ert y is kn o wn as t h e fo rm abilit y o f m et al. Defo rm at io n o r flo w o ccu rs wh en t h e ro ws o f at o m s wit h in t h e in d ivid u al cryst allin e grain s are able, wh en st ressed beyo n d a cert ain lim it , t o slid e again st o n e an o t h er an d co h esio n bet ween t h e ro ws o f at o m s t akes p lace at t h e fo llo win g at o m ic lat t ice. Th is slid in g o ccu rs alo n g p lan es an d d irect io n s d et erm in ed by t h e crys-t allin e scrys-t ru ccrys-t u re an d is o n ly m ad e p o ssible by, fo r exam p le, d islo cacrys-t io n s (fau lt s in t h e arran gem en t o f t h e at o m ic lat t ice). O t h er flo w m ech n ism s su ch as t win cryst al fo rm at io n , in wh ich a p erm an en t d efo rm a-t io n is cau sed by a ro a-t aa-t io n o f a-t h e laa-t a-t ice fro m o n e p o sia-t io n a-t o an o a-t h er, p lay o n ly a m in o r ro le in m et al fo rm in g t ech n o lo gy.
Flo w co m m en ces at t h e m o m en t wh en t h e p rin cip le st ress d ifferen ce (
s
m ax–s
m in) reach es t h e valu e o f t h e flo w st ress kf, o r wh en t h e sh earst rain cau sed by a p u rely sh earin g st ress is eq u al t o h alf t h e flo w st ress, given by:
By n eglect in g t h e p rin cip le st ress
s
2, t h is m at h em at ical exp ressio n rep-resen t s an ap p ro xim at e so lu t io n o f t h e sh earin g st ress h yp o t h esis wit h t h e great est p rin cip le st ress
s
1an d t h e sm allest p rin cip le st resss
3:kf = σmax–σmin
(1)
–, free hydroforming 406 –, tool-dependent hydroforming
406
Hydro-M ec forming process 187
hydro-mechanical deep draw ing 185-189 hydro-mechanical reverse
draw ing 185 hydrostatic pressure 73 image generation, digital 401 image processing 401 impact speed 57, 199, 204, 289,
509
inclined conveyor 517 indexing unit 298 individual electrical control
device 97
induction w elding 311-313 industrial PC 103, 322 f., 329 infeed roller 316
infeed table 316 inflation limit 418 initial blanking stop 356 f. inner form ejector pin 353 f. inner form punch 353, 355 input w eight 442
input/output module 104, 266, 326
input/output system 97, 257, 329
intermediate annealing 423, 458
intermediate heat treatment 467
intermediate storage 397 f. intermediate treatment
450 f.
internal pressure 417 international unit system 31 interrupt input 102
investigation part handling 478, 481-484, 506
involute gearing 466 ion implantation 500 iron phosphate layer 461 ironing 10, 435, 440, 445, 447 f.,
475 f. ironing die 435 ironing die ring 476 JIS standard 451 job data acquisition 264 job management 321 joining 5, 23 - through forming 6 just-in-time production 398
knock-out pin 41
knuckle-joint drive 57, 205, 513, 527, 534
–, curve 59
–, double knuckle-joint system 208, 360 f.
–, knuckle-joint bottom drive 208, 523
–, modified 58 f., 528 –, modified knuckle-joint top
drive 509 f. –, pressing force 58 knuckle-joint press 55, 507 f.,
525 Lsection 377 lamination stack 301 large-panel transfer press 125,
391, 393, 396
– crossbar transfer 243-250, 391, 398
– tri-axis transfer 234-243, 391 f., 398
laser w elding 311, 313 lateral extrusion 433 f., 477 layout 400
lead 454 lead press 225 –, double-action 225 leg length 371 length 14 lift beam 245 f., 249 lifting bridge 45 lifting edge 126 light alloy 174
limiting draw ratio 167, 187 line operating and information
system 321 line operation 259 link 66
link drive 55 f., 223 link drive system 529 link-driven press 55 load, off-center 37, 80 f., 214 loading 393
loading station 479-481 loading system 517 local control unit 255 locking bead 22 locking device 84 f. lock-out-plate 118 lock-out-procedure 117 long section 380 longitudinal knife 268 longitudinal seam w elding 380 longitudinal shaft 64 longitudinal shaft drive 63-65 low er elongation limit 175 low -voltage sw itchgear 97
lubricant 179, 181, 422, 460, 463
lubricant film 180 lubrication 72, 179-185 –, hydro-dynamic fluid lubrication 180 lubrication pocket 358 f. lubrication system 361 f., 520 machine and production data
260 - 262 –, acquisition 262 machine tool 1
machining allow ance 439, 465 magnetic belt conveyor 217 main drive 60, 66 maintenance 267, 321 maintenance back-up 105 maintenance capability 320 maintenance instruction 259 maintenance interval 321 maintenance module 324 malfunction diagnostics system
261 mandrel 434
mandrel friction force 476 manufacturer’s declaration 111 manufacturing process 5 material 174-179, 423 f., 450-454 material cohesion 6, 25 material feed 305 material flow 26-28, 339 material number 174 material pair 181 material saving 269 material selection 338 material stress 339 material usage 125
material utilization 271, 273, 356 maximum friction condition 180 maximum true strain 470 mean pressure 31 mechanical hydraulic press
203
mechanical press 38, 49-72 –, design 63
medal minting press 537 metal flow 140, 148, 157, 398,
400, 468
metal forming technology 1, 6, 19, 123
micro-alloyed steel 174, 177, 450 minimal bending radius 368 minting line 526-541 modified knuckle-joint 514 modified knuckle-joint drive 58
f., 528
modified knuckle-joint top drive 509 f.
(2)
modified top drive 205-207 modifying material property 5 molybdenum disulphide 462 molycoting 460 f.
monobloc press frame 360, 528 f.
monobloc structure 514 moving bolster 89 f., 152, 228,
248-250, 290 moving punch 352 f., 360 moving stripper 316, 318 multiple pressing 431 multiple stroke 537 multiple-point press 39 multiple-station press
508-512
multi-point controller 149 NC machining 134 near net shape component
447 necking 449
net shape component 447 net shape production 485 netw orking capability 104 nibbling 20
nitriding 500, 502 noise protection 228 noise reduction 289 nominal load 52 f. normal annealing 424 normal contact stress 180 f. normal force 179
normalization 458 f. notch impact strength 449 notching 431
notching device 317 notching machine 297 –, single notch blanking 297 –, automatic notching machine
299
notching system 299 number of presses 224 off-center load 37, 80 f., 214 offset punch 275 oil flow 72 oiling 220 omega section 377 one-point configuration 39 on-line control 401 on-line monitoring 105 open contour 268 open contour blanking 268 open die forming 7, 433, 476 open front press design 34 open shears 458 f. opening angle 370
operating and information system 324
operating and visualization system 94-96, 258 operating capability 320 operating instruction manual
114 f.
operating mode 256 operator console 95 operator prompt synoptic 260 operator station 95, 258 optoelectronic system 401 OSHA 117
outfeed roller 316 f. output 394 f. overbending 23
overload safety device 54, 66 f. overrun drive 87 f.
pallet changeover 383 panel retaining block 144 panel structure 514 parallel lift mechanism 153 parallelism control system 80,
215
parallelism controlling cylinder 80, 252
parallelism of the slide 80-82 parameter 51 f.
part discharge 306, 308 part draw ing 130 part family 394, 398 part transfer 131, 478-484 part-dependent tooling 154,
238, 245 peeling 456
pendent control unit 258, 326 penetration depth 294 f. penetration depth control
293-296
perforating press 314-320 perforating punch 316 phosphating 455, 460 f., 463 phosphor-alloyed steel 174, 176 pickling 460, 462
piercing 23, 431, 440 piercing module 214 piercing process 435 pilot pin 126, 356 pilot series 129 f. pint holding plate 250 piston rod 39 pitch 273
pivoting slide plate 151 plasma nitriding 502 plastic press 251 f. plate-type brake 285 plunger 426 pneumatic 70
pneumatic ejector 482, 487 pneumatic pad 487 pointed face/finish 275 positioning module 100 positive press-off pin 356 f. pow er 49
pow er supply 97 precision blanking 330 preform 423-425, 454 pre-forming 425 pre-graphitizing 522 pre-heat-treated steel 450 preliminary draw ing 455 pre-production series 130,
138 pre-run 136 press
–, blanking 286 f. –, bottom-driven 37 –, characteristics 149 –, deep draw ing 41-44 –, displacement-related 37 –, double-action 41 f., 56, 173,
185
–, embossing 522-525 –, fine blanking 360-365 –, force-related 37 –, high-speed blanking line
291-297, 307, 391, 536 –, horizontal 513 f. –, hybrid 203-205 –, hydraulic 38, 73-85 –, knuckle-joint 55, 507 f., 525 –, link-driven 55
–, mechanical 38, 49-72 –, mechanical hydraulic 203 –, perforating 314-320 –, single-action 43 f., 169, 173 –, sizing 522-525
–, straight-sided 297 –, top-driven 37 –, try-out 391
–, universal 198-208, 391 –, w ork-related 38 press bed 37 press bus system 257 f. press construction 33 f. press control system 94-105,
320-329
–, electrical equipment 94 –, function 94
–, functional structure 98 f. –, structure 97
press crow n 34, 37, 66 press frame 34-37 –, configuration 36 –, monobloc 36 –, multiple part 36 press line 124, 222-228, 391 f. press load schedule 396 f.
(3)
Press M anagement System (PM S) 262
press synoptic 260 press through process 476 press type 33 f.
pressing force 506 pressure –, hydrostatic 73 –, mean 31
pressure accumulator drive system 77 f.
pressure block 127 pressure column 45 f., 250 pressure control system 101 pressure identifier 427 pressure medium 406 f. pressure medium reservoir 185 pressure pad 250
pressure pattern 133 pressure pin 250 pressure plate 144 pressure point 66 f., 172, 293,
316
pressure sensing, die-independent 363 pre-stretching process 190 primary shaping 5 principle deformation 28 principle strain 416 principle stress 25 f. process combination 22-24,
437, 440 process control 137 process data acquisition 403 process monitoring 402 process plan 123, 130 f. process simulation 138 process visualization 95, 322 processing plan 123, 467 f. processing time 394 production capacity 395 production cell 320 production cycle 398 f. production data 262, 399 production data acquisition
264, 321 production die 421 production log 321 production log information
324
production requirement 393 production scope 393 production stroking rate 394 f. profile 376 f.
profile parting die 380 profile roll changeover 381 programmable logic controller
(PLC) 97, 102, 257, 321 f. programming 105 –, sequentional 102
progressive blanking die 125, 307, 356
progressive compound die 126, 345, 351-353, 356 f.
progressive die 125, 282, 297 properties of the cut surface
346
prototype die 137 f., 421 prototype part 130 pump drive 77 f. punch 159, 353 –, bending 372 –, bevelled 275 –, blanking 354 f. –, counterpunch 434 –, draw 156-160, 185, 187 –, extrusion 494 –, fixed 352, 354, 360 –, inner form 353, 355 –, moving 352 f., 360 –, offset 275 –, perforating 316 –, seal 406 f., 420
–, specific punch pressure 472 –, telescopic 11
punch bundling 23, 309 f. punch control beam 316 punch control unit 316 punch design 491-495 punch head 127 punch retaining plate 144 punch tightening rod 361 pusher 513
push-in clamp 92 push-pull drive 87 PVD process 500-502 quality assurance 321, 389,
400-404
quality control 122, 400-404 quick die change system 192 rail section 376
rated press force 52 f., 57 reaction force 188 f. ready-to-run synoptic 260 f. recoiler 284
recovery annealing 458 f. recrystallization 26
recrystallization annealing 423, 458 f.
recrystallization rate 26 recrystallization temperature
26
rectifier, digital 101 redraw 156 f., 167 reducing gear 120 reduction 9, 425
redundancy, hydraulic 97 reengineering 442 relative blanking force 274 relief 458 f.
remote diagnostics 104 f.,321 repair 267, 321
residual risk 115 residual stress 122, 369 resistance to shear 274 resistance to w ear 121 resistance w elding 311, 313 restraining force 285 restrike block 144 restriking 16, 23 resuming operation 320 return stroke force 274 reverse draw ing 159 –, hydro-mechanical 185 rib 170
rim length 273 rim w idth 273 rimming machine 526 robot 227 f. rocker element 290 rod extrusion 433 f. roll bending 16 roll bending radius 376 roll embossing 436 roll feed 194 f., 288, 292, 305 roll forming 17, 373-383 roll forming line 379 roll stand set 380 roller gib 40, 304, 314, 528 roller pitch 385-387
roller straightening 16, 383-389 roller straightening machine
385, 387 rolling 374, 433 –, cold rolling 7 –, hot forming 7 rolling die 380 rolling direction 366 rolling ring 284 rotary feed system 531 rotating brake system 285 f. rotating shears 288 round steel 455 running gear 466 run-up time 60 safety 106-119
safety control system 97, 99, 257
safety inventor level 397 f. safety measure 106 safety officer 119 safety requirement –, European 107-111 –, USA 117-119
(4)
sand blasting 460 sandw ich coating 502 scale formation 438 scale forming 122 scale layer 460 scrap chute 144 screw press 38 SE project 130 seal punch 406, 420 seaming bed 127 secondary contour 407 section 376 f.
–, basic section geometry 374 –, long 380
segment blank 301 segmented bed cushion 215 segmented blank holder 313 sensor 94, 97, 326, 329 separating device 479 sequential programming 102 series
–, pilot series 129 f. –, pre-production series 130,
138 series run 149 series try-out 130 servo drive 101 set-up 257, 260 f. set-up time 86 shaft hole punch 300 shear 287
–, circular 284 –, cropping 288
–, cut-to-length 286, 288, 380 –, exchangeable 284 –, fixed 287 –, rotating 288 –, separating 316 f. –, stationary 287 f. –, sw ivel-mounted 287 shear cutting 19 f. sheared contour 274 shearing 457 shearing force 458 shearing guide 458 –, closed 458 f. shearing resistance 458 shearing strength 274 shearing stress hypothesis 25 f. shearing velocity 458 shearing w ork 458 shearing zone 269 shears, open 458 f. sheet metal forming 433 sheet metal thickness 140 Sheet M olding Compound
(SM C) 251 sheet, cold-rolled 174 shrink fit 492 f. shrink ring 491, 493
SI unit 31 f. side cutter w aste 273 side member 210-216 side shear 126 silicon bronze 453 simulation 415, 468 simulator 391
Simultaneous Engineering (SE) 128, 413
single cycle 257 single die 124
single notch blanking 297 single stroke 537 single stroke operation 394 single-acting deep draw ing
press 44
single-action dow nstream press 225
single-action draw ing 159 single-action press 43, 169, 173 sintered part 522, 524 sizing operation 476 sizing press 522-525 sleeve clamping 488 slew ing ring 299 slide 37, 66-70, 144, 159 –, blank holder 41, 158 slide adjustment 66 slide counterbalance 67 slide cushion 44, 69 slide drive 37-41 slide force 188 f., 342 slide gib 39, 360, 362 –, eight-track slide gib 509 –, gib type 39 f.
slide impact speed 48 slide locking 83-85 –, non-positive acting 85 –, positive acting 84 slide position sensor 81 slide tilt 80, 134 slide velocity 180 f., 199 sliding component 136 sliding friction condition 179 sliding insert 421
slip-on gearing 466 slitting device 317 slitting line 284 f. slug preparation 454-459 small control system 266 smooth surface 334 f., 337,
347
soaping 460 f., 463 sodium soap 461 soft annealing 458 f. softw are system 321 solid body friction 180 solid forming 91, 433-542 –, choice of press 505 f. –, design rule 465
–, economic aspect 441-443 –, lot size 464
solid forw ard extrusion 445, 447 f.
solutionizing 423
sorting and positioning element 127
sound enclosure 529 special die 127
specific blank holder pressure 171
specific forming w ork 472 specific punch pressure 472 speed drop 51- 54, 60 spindle pressure points 66 spinning
–, roll head 13 –, spinning bush 13 –, spinning mandrel 13 splash ring 186 spotting fixture 150 spray system 521 springback 23, 140, 367, 372,
415
springback factor 367 f. stacking cart 290 stacking channel 308 stacking device 391 stacking line 290 stacking unit 253 f., 287 stamping nut 127 f. stamping plant 389-400 –, layout 389, 391 stand changeover 382 standstill 263 standstill data 262 start-stop-line 379 start-up 101, 320 stationary shear 287 f. steel 120, 450-452 –, alloyed 174
–, austenitic chromium nickel 174, 177
–, bake-hardening 174, 176 –, ferritic chromium 174, 176 –, flat 456
–, high-speed 497, 499 f. –, micro-alloyed 174, 177, 450 –, phosphor-alloyed 174, 176 –, pre-heat-treated 450 –, round 455
–, unalloyed 174, 176 –, w arm/hot forging tool steel
498-500 steel castings 120 steep conveyor 479, 529 straightener 194, 288, 384 straightening 383
straightening by stretching 14 straightening force 388
(5)
straightening roller 385, 388 straight-sided press 34, 297 strain hardening 415, 423, 425,
432 stress –, effective 416 –, largest 28 –, mean 28 –, principle 25 f. –, smallest 28
stress relief annealing 122 stretch draw ing 15, 22, 156-193 –, blank holder 22
stretch forming 14 f. strip draw ing 10 strip layout 356 strip length 271, 273
strip perforating press 314, 318 strip w idth 270 f., 273 stripper 144, 269, 304, 315-319 stripper slide 316
stripping 274
stripping force 333, 355 f., 358 stroke adjustment 69 stroke limitation 82 f., 191, 250 suction cup 217
surface fatigue 183
surface hardening process 142, 146
surface quality 443 f., 447 f. surface treatment 457, 459-463 sw ing arm feeder 226-228 sw itch cabinet 258, 326 sw ivel bending 16 f. sw ivel mounted shear 287 sw ivelling bracket 86 sw ivelling die 290 synchronous overload clutch
533
synchronous tapered cup 365 synoptic 260 f.
system of measurement, technical 32 T section 377 tailored blank 309-313 tapering 9
team w ork 320 tearing 19, 21, 346 technical system of
measurement 32 telescopic roll set 380 tensile strength 174, 449 tensile test specimen 175 T-fitting 406 f., 409 thermoplastics, glass-fiber
reinforced 251 f. thickness distribution 416 thickness related defect 530
three-phase asynchronous motor 100
tie rod 36 tilt moment 81 f. tilting block 127 tilting mechanism 479 tin 454
tin bronze 453 titanium 179, 454 titanium alloy 179 tolerance 444 tool see „ die“
tool breakage safety system 363
tool data management 321, 323 tool-dependent hydroforming
406 tooling 391
–, part-dependent 154, 238, 245 tooling data input mask 96 top drive 59
top to tail arrangement 270 top-driven press 37 transfer 244
–, electrically driven transfer 239
–, motion curve 239 transfer die 125, 345, 355 transfer feed system 518 transfer press 35, 125, 229-234,
391
–, high-performance transfer press 201
–, large-panel transfer press 125, 391, 393, 396 transfer simulator 154 f. transformation annealing 121 transition radius 466 transport length 505 transportation time 198, 394 transverse shaft drive 63 f. tri-axis transfer 201, 231 f., 238 tribology 179
trimming 23, 435 trimming module 214 triple stroke 537 troubleshooting 101, 321 try-out 136
–, home try-out 130 –, series try-out 130 try-out center 152 f. try-out equipment 148-154 try-out press 148, 391 T-slot 88, 92 T-slot clamp 92 T-track 90, 152 f., 228, 290 tube extrusion 433 f. tube section 456
tubular blank 414, 416, 424 f. tumbling 460
turning device 44
turnover device for blank stacks 220
turnover station 227 –, blank turnover station
217-222
–, drum turning device 220 –, fork turning device 221 tw isting 18
tw o-point configuration 39 tw o-point slide drive 506 type test 111
U/C section 376
ultimate elongation 175, 423 ultrasound detection 122 unalloyed steel 174, 176 undercut 466
unit of measurement 31 f. unit system, international 31 universal minting press 534 universal press 198-208, 391 universal station 155, 228, 238,
247 upright 34 upset ratio 467 upsetting 440, 477 upsetting die 435, 476 upsetting/compression 27 f.,
405, 407, 410, 435, 445, 476 f. uptime 395
used machine 116 utilization rate 398 f. valve 79
valve block 72 variation in diameter 466 vee-ring 332, 335 vee-ring force 356 f., 360 vee-ring piston 361 f. vee-ring plate 353 f. vibrating conveyor 479 vibration characteristic 295 viscosity 183
visualization 96 volume calculation 466 volume constancy 28, 443 volumetric adjustment 467 V-prism gib 39
wall friction 469 w all thickness 465 w all thickness tolerance 446 w arm extrusion 445 w arm forging 438 f., 451 w arm forming 437, 506 w arm forming line 520-522
(6)
w ashing/cleaning machine 219 w aste chute 144
w ater container 185, 187 f., 190 w ear 179-185
w ear at surface layer 182 w ear mechanism 179, 181 f. w ear resistance 183 w ear resistant coating 500 w edge adjustment 66, 486-488 w edge-action cutting 19, 21 w edge-action pusher die 490 w edge-type clamps 490 w ide strip section 377 w ire 454 f.
w ire feed device 512 w ork 29 f., 49-54, 506 f –, bending 372 –, blanking 274, 276 f. –, deformation 30 –, draw energy 173 –, forming 53, 472 – velocity 506 w ork hardening 339 w ork requirement 282,
469-477
w orking period 395, 398 w rinkle bulging 13 w rinkling 140 f.
X-ray detection 122
yield strength 449 –, low er yield strength 175 Zsection 377
zinc 454
zinc phosphate layer 461 zinc soap layer 461 zirconium 454