A. Limit Fungsi Trigonometri - Limit, Turunan, dan Integral Fungsi Trigonometri

  Limit, Turunan, dan Integral Fungsi Trigonometri

A. Limit Fungsi Trigonometri

  BC

  sin x=

  OB BC=OB ⋅sin x ( )

  BC=r ⋅sin x

  1 AD tan x=

  OA AD=OA ⋅tan x ( )

  AD=r ⋅tan x

  2 L

  x juring O AD

  2

  2 π =

  π r

  2

  2 π x

  ⋅ L = ⋅ π r juringOAD

  2 x ⋅ π r

  L = juring OAD

  2 π

  2 x ⋅ r

  L = juring OAD

  2

  1

2 L ⋯

  3 = ( )

  juring OAD

  2 ⋅ x ⋅r

  L < L < LOBC juringOADOAD

  1

  1

  2

  1 < 2 ⋅OC ⋅BC< 2 ⋅ x ⋅r 2 ⋅OA⋅ AD

  1

  1

  2

  1

  1 <

  2

  2 ⋅OC ⋅r ⋅ sin x < 2 ⋅ x ⋅ r 2 ⋅OA ⋅r ⋅ tan x∨: 2 r

  OC ⋅sin x OA ⋅tan x x<

  <

  r r OC OA r ⋅sin x< x< r ⋅ tan x

  cos x

  sin x<x < rr ⋅tan x

  cos x ⋅sin x<x <tan x ∨:sin x cos x x tan x

  sin x

  < sin x sin x < sin x sin x cos x x cos x

  sin x

  < sin x sin x < sin x

  x

  1 cos x < sin x < cos x

  x

  1 lim cos x<lim sin x <lim cos x

  x →0 x → 0 x→ 0 x

  1 cos0 <lim sin x < cos0

  x→ 0 x

  1 1<lim

  x→ 0 sin x <

  1

  x

  1<lim sin x <1, maka

  x→ 0 x

  lim

  1

  ( )

  sin x =1⋯

  x →0

  cos x

  sin x<x <tan x ∨:tan x

  cos x x tan x

  sin x

  < tan x tan x < tan x cos x x

  sin x

  < sin x tan x <1 cos x

  

x

  cos x ⋅sin x ⋅ cos x sin x < tan x <1

  x

  cos x

  cos x

  1 < tan x <1

  2 x

  cos x < tan x <1

  2 x

  lim cos x<lim

  1

  x →0 x → 0 tan x <lim x →0 2 x

  cos 0<lim tan x <1

  x → 0 x

  1<lim tan x <1, maka

  x→ 0 x

  lim ( 2 )

  x →0 tan x =1 ⋯ Rumus Limit Fungsi Trigonometri x

  lim sin x =1

  x →0 x

  lim tan x =1

  x →0

  sin x lim

  x =1 x →0

  tan x lim

  x =1 x →0 ax

  lim

  x →0 sin ax =1 ax

  lim tan ax =1

  x →0

  sin ax lim

  ax =1 x →0

  tan ax lim

  x →0 ax =1

  Contoh: Hitunglah sin 2 x lim

  x →0 3 x

  Jawab: sin 2 x sin 2 x lim 3 x =lim 3 x ⋅1

  x →0 x → 0

  sin 2 x 2 x lim

  ¿

  3 x ⋅ 2 x

  x→ 0

  sin 2 x 2 x

  ¿ lim x→ 0 2 x ⋅ 3 x

  ¿

  1

  23

  2

  ¿

  3 Jadi, sin 2 x 2 lim

  3 x =

  3

  x →0

B. Turunan Fungsi Trigonometri

  ( ) x =

  Misal: f sin x, maka

  

( ) ( )

' f x+ hf x f ( x ) = lim

h

h → 0

  sin ( x+h ) sin x

  ¿ lim h→ 0 h

  1 2 ( x+h+ x ) sin ( x +hx )

  

cos 12

  2 lim

  ¿ h h→ 0

  1 2 ( 2 x +h ) sin ( h )

  

cos 12

  2 lim

  ¿ h h→ 0

  1

  1

  1 2 cos 2 x + sin ( h ) 2 2 h

  2

  ( ) ( )

  ¿ lim h h→ 0

  1

  1 2 x + sin

  

cos

  2 h 2 h

  ( ) ¿ lim h h→ 0

  1

  1 2 cos x + sin 2 h 2 h

  ( )

  lim

  ¿ 1 h h→ 0

  1

  1

  1 2 x + sin

  

cos

  2 h 2 h

  ( )

  2

  ¿ lim h

  1

  h→ 0

  2

  1

  1 cos x + sin

  ( 2 h ) 2 h

  lim

  ¿

  1

  h→ 0

  2 h

  1 sin 1 2 h lim cos x+

  ¿ lim

  2 h

  1

  h→ 0 ( ) h → 0

  2 h

  1 sin ( h )

  1

  2 cos x + ( )

  

¿ lim

  2

  1

  ( ) h → 0

  2 h

  ¿ cos x ⋅1

  cos x ⋯ ( 1 )

  ¿

  ( x ) =

  Misal: f cos x, maka

  f ( x+ h ) − f ( x ) ' f ( x ) lim

  =

  h h → 0

  ( )

  cos x +h − cos x

  ¿ lim h h→ 0

  1 − 2 x +h+x sin x+hx

  ( ) ( )

  2

  sin 12 ¿ lim h h→ 0

  1 − 2 2 x +h sin h

  ( ) ( )

  2

  sin 12 ¿ lim h h→ 0

  1

  1

  1

  2 2 x+ sin ( h ) − sin 2 2 h

  2

  ( ) ( )

  lim

  ¿ h h→ 0

  1

  1 − 2 sin x + sin

  ( 2 h ) 2 h

  lim

  ¿

h

h→ 0

  1

  1 2 x + sin − sin 2 h 2 h

  ( )

¿ lim 1

h

h→ 0

  1

  1

  1 − 2 sin x + sin

  ( 2 h ) 2 h

  2 lim

  ¿

h

  1

  h→ 0

  2

  1

  1 − sin x + sin 2 h 2 h

  ( ) ¿ lim

  1

  h→ 0

  2 h

  1 sin 1 2 h

  ¿ − lim sin x + lim ( 2 h )

  1

  h → 0 h→ 0

  2 h

  1 sin ( h )

  1

  2

  ( ) ¿ − sin x+ lim

  (

  2 )

  1

  h→ 0

  2 h

  ¿ − sin x 1

  ( ) ¿ − sin x

  2 Rumus Turunan Fungsi Trigonometri

  ' ( x )

  Jika f = ( x ) cos x sin x, maka f =

  ' ( x )

  = ( ) Jika f cos x, maka f x =− sin x

  '

  2 ( ) x =

  Jika f ( x ) = sec x tan x, maka f

  '

  2 ( x ) =

  Jika f ( x ) =− csc x cot x, maka f

  ( x ) = ( x )

  Contoh: Jika diketahui f ! sin 2 x, maka hitunglah f ' Jawab:

  ( ) f x =

  sin 2 x, maka

  ' f ( x ) = 2cos2 x

  ' f ( x ) = 2cos 2 x

  Jadi,

C. Teorema L’Hopital

  1

  = lim

  1 '

  y

  ) ]

  ∆ x+x ) ⋅g ( x

  g (

  

  ( ∆ x +x

  ∆ x→ 0 [ f ( ∆ x +x ) ⋅ g ( x ) − f ( x ) ⋅ g ( ∆ x +x ) ∆ x

  = lim

  1 '

  y

  ∆ x ]

  1

  ∆ x→ 0 [ f

  ) ⋅ g

  ( x ) − f ( x ) ⋅ g

  lim

  1

  ) ]

  ∆ x+ x ) ⋅g ( x

  g (

  1

  ∆ x →0 [

  ]

  ( x

  ) ∆ x

  ( ∆ x+ x

  ) ⋅ g

  ( x

  − f

  )

  ( ∆ x +x ) g ( ∆ x +x ) ⋅ g ( x )

  ∆ x→ 0 [ f ( ∆ x +x ) ⋅ g

  ( x )

  Misal: y

  = lim

  1 '

  y

  f ( x ) g ( x )

  =

  1

  Bukti:

  −

  x →c f ' ( x ) g ' ( x )

  = lim

  x →c f ( x ) g ( x )

  Jika g ≠ 0 dan x ≠ c, maka lim

  Teorema

  f ' ( x ) = 2 cos 2 x

  ∆ x→ 0 [ f ( ∆ x+x ) g ( ∆ x +x )

  f ( x ) g ( x ) ∆ x

  = lim

  ( ∆ x+x

  1 '

  y

  ]

  ) ∆ x

  ( x

  ) ⋅g

  f ( x ) ⋅ g ( ∆ x+x ) g

  ]

  −

  ( x )

  ∆ x→ 0 [ f ( ∆ x+ x ) ⋅g

  = lim

  1 '

  y

  

⋅g

( ∆ x +x )

  • 0−f ( x )

  ∆ x→ 0 [ f ( ∆ x +x ) ⋅ g

  • f
  • f

  

)

{ g

  { f (

  ∆ x +x )

  − f

  ( x

  ) } g

  ( x

  ) ∆ x

  −

  f (

x

  ( ∆ x+ x

  = lim

  )

  − g

  ( x

  ) }

  ∆ x ]

  lim

  ∆ x →0 [

  1

  g ( ∆ x+x ) ⋅g ( x ) ] y

  1 '

  ∆ x→ 0 [

  1 '

  [

  ( x )

  } ∆ x

  ]

  lim

  ∆ x→ 0 [

  1

  g ( ∆ x +x ) ⋅ g ( x )

  ] y

  1 '

  = lim

  ∆ x→ 0 [ f ( ∆ x +x ) ⋅ g

  −

  g ( ∆ x+x ) ⋅ g ( x ) ] y

  f ( x ) ⋅ g ( x )

  ∆ x

  −

  f ( x ) ⋅ g ( ∆ x +x )

  −

  f ( x ) ⋅ g ( x )

  ∆ x ]

  lim

  ∆ x →0 [

  1

  =

  lim

  −

  

∆ x →0

  [

  lim

  ∆ x →0 [ f ( ∆ x + x ) − f ( x ) ∆ x

  ]

  lim

  ∆ x → 0

  [ g

  ( x

  )

  ]− lim

  [ f

  1 '

  ( x

  )

  ] lim

  ∆ x→ 0 [ g ( ∆ x +x ) − g ( x ) ∆ x

  ] ]

  lim

  ∆ x →0 [

  1

  g ( ∆ x+ x ) ⋅g ( x )

  ]

  =

  ] y

  ∆ x →0 [

  ∆ x→ 0 [

f

  { f

  ( ∆ x +x

  )

  − f

  ( x

  ) } g

  ( x

  ) ∆ x

  ]

  − lim

  

(

x

  g ( ∆ x+x ) ⋅g ( x )

  ) { g

  ( ∆ x +x

  )

  − g

  ( x

  ) } ∆ x

  ] ]

  lim

  ∆ x →0 [

  1

  f ( x ) ⋅ g ( x )

  ( ∆ x + x )

  = lim

  = lim

  ) ∆ x

  ]

  lim

  ∆ x → 0 [

  1

  g (

  ∆ x +x ) ⋅ g ( x

  ) ] y

  1 '

  ∆ x→ 0 [ { f ( ∆ x +x )

  ) ⋅ g

  ⋅ g ( x ) − f ( x )

  ⋅ g ( x ) } + { f ( x )

  ⋅ g ( x ) − f ( x )

  ⋅ g ( ∆ x +x ) }

  ∆ x ]

  lim

  ∆ x →0 [

  1

  g ( ∆ x+ x ) ⋅g ( x )

  ] y

  ( ∆ x +x

  ( x

  = lim

  ) ⋅ g

  1 '

  ∆ x ]

  lim

  ∆ x → 0 [

  y

  g ( ∆ x +x ) ⋅ g ( x ) ] y

  1 '

  = lim

  ∆ x→ 0 [ f

  ( ∆ x +x

  ( x

  − f

  )

  − f

  ( x

  ) ⋅ g

  ( x

  )

  ( x

  

)

⋅ g

  ( x

  )

  1 '

  ∆ x→ 0 [

  {

f ( x )

⋅ g

  g (

  f ( x ) ⋅ g ( x )

  } − {

f ( x )

⋅ g

  ( ∆ x +x )

  −

  f ( x ) ⋅g ( x )

  } ∆ x

  ]

  lim

  ∆ x→ 0 [

  1

  ∆ x +x )

  ( x )

  ⋅ g ( x

  ) ] y

  1 '

  = lim

  ∆ x→ 0 [ { f ( ∆ x +x ) ⋅ g

  ( x )

  −

  f ( x ) ⋅ g ( x )

  } ∆ x

  −

  −

  ∆ x→ 0 [ { f ( ∆ x +x ) ⋅ g

  { f (

  ( x

  ∆ x +x )

  ⋅ g ( x

  )

  − f

  ( x

  ) ⋅ g

  ( x

  ) } − { − f

  ( x

  ) ⋅ g

  )

  = lim

  ( x

  ) ⋅ g

  ) }

  ∆ x ]

  lim

  ∆ x → 0 [

  1

  g ( ∆ x +x ) ⋅ g ( x )

  ] y

  1 '

  ( ∆ x +x

  • 0−f ( x )
  • f

  −

  lim

  ∆ x→ 0 [

  1

  g ( ∆ x +x ) ⋅ g ( x )

  ] ] y

  2 '

  = lim

  ∆ x→ 0 [

  lim

  ∆ x → 0 [

  { f ( ∆ x + x ) ⋅ g

  ( x )

  f ( x ) ⋅g ( x )

  { f ( ∆ x +x ) ⋅ g ( x ) − f ( x ) ⋅g ( x ) } + { f ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ( ∆ x +x ) } ∆ x

  } − { − f ( x ) ⋅ g

  ( x )

  ( ∆ x+x ) }

  ∆ x ]

  lim

  ∆ x→ 0 [

  1

  g ( ∆ x + x ) ⋅ g ( x ) ]

  ] y

  2 '

  = lim

  ∆ x→ 0 [

  ]

  ∆ x → 0 [

  ∆ x → 0 [ { f ( ∆ x +x ) ⋅ g

  )

  ( ∆ x + x

  ) ⋅ g

  ( x

  )

  − f

  ( x

  ) ⋅g

  ( x

  )

  ( x

  )

⋅g

  ( x

  − f

  lim

  ( x

  ) ⋅ g

  ( ∆ x+x

  ) ∆ x

  ]

  lim

  ∆ x →0 [

  1

  g ( ∆ x+x ) ⋅ g ( x )

  ] ] y

  2 '

  = lim

  ∆ x→ 0 [

  lim

  ( x )

  lim

  1

  = lim

  ∆ x→ 0 [

  lim

  ∆ x → 0 [ f ( ∆ x +x ) ⋅ g

  ( x ) − f ( x ) ⋅g

  ( x ) ∆ x

  −

  f ( x ) ⋅ g ( ∆ x +x ) − f ( x )

  ⋅g ( x )

  ∆ x ]

  lim

  ∆ x→ 0 [

  g ( ∆ x +x ) ⋅ g ( x )

  ] ] y

  ] ] y

  2 '

  = lim

  ∆ x→ 0 [

  lim

  ∆ x → 0 [ { f ( ∆ x + x ) − f ( x ) } g ( x )

  ∆ x

  −

  

f ( x ) { g ( ∆ x +x ) − g ( x ) }

∆ x

]

  lim

  ∆ x→ 0 [

  1

  g ( ∆ x + x ) ⋅ g ( x )

  2 '

  g ( ∆ x+ x ) ⋅ g ( x )

  −

  2 '

  f ( x ) ⋅g ( x )

  } − {

f ( x )

⋅ g

  ( ∆ x +x )

  −

  f ( x ) ⋅ g ( x )

  } ∆ x

  ]

  lim

  ∆ x →0 [

  1

  g ( ∆ x+x ) ⋅g ( x )

  ] ] y

  = lim

  1

  ∆ x→ 0 [

  lim

  ∆ x → 0 [ { f ( ∆ x + x )

  ⋅ g ( x ) − f ( x )

  ⋅g ( x ) }

  ∆ x

  −

  

{ f ( x )

⋅ g

  ( ∆ x+x ) − f ( x ) ⋅ g

  ( x ) } ∆ x

  ]

  lim

  ∆ x → 0 [

  ∆ x → 0 [ f

  ∆ x→ 0 [

  ] ]

  = lim

  f ' ( x ) g ( x )

  −

  f ( x ) g ' ( x )

  [ g (

  x ) ]

  2

  ⋯ ( 1 ) Misal: y

  2

  =

  f ' ( x ) g ' ( x )

  y

  2

  ∆ x →0 [ f ( ∆ x+ x ) g ( ∆ x+x )

  1 '

  −

  f ( x ) g ( x ) ∆ x

  ] y

  2 '

  = lim

  ∆ x→ 0 [

  lim

  ∆ x → 0 [ f ( ∆ x + x ) g ( ∆ x+ x )

  −

  f ( x ) g ( x ) ∆ x

  ] ] y

  2 '

  = lim

  =

  y

  lim

  g ( x ) ⋅ g ( x )

  y

  1 '

  =[ f '

  ( x

  ) g

  ( x

  ) − f

  ( x

  ) g '

  ( x

  ) ]

  1

  y

  2

  1 '

  =[ f ' (

  x ) g

  ( x

  )

  − f

  ( x

  ) g '

  ( x

  ) ]

  1 [ g

  ( x )

  ]

  ∆ x→ 0 [

  ∆ x → 0 [ f ( ∆ x +x ) ⋅ g ( x ) − f ( x ) ⋅ g ( ∆ x +x ) g ( ∆ x +x ) ⋅ g ( x )

  = lim

  y

  ∆ x → 0 [ f ( ∆ x + x ) ⋅ g

  ( x ) − f ( x ) ⋅g

  

( ∆ x + x )

∆ x

  ]

  lim

  ∆ x→ 0 [

  1

  g (

  ∆ x + x )

  ⋅ g ( x

  ) ]

  ]

  2 '

  ∆ x→ 0 [

  = lim

  ∆ x→ 0 [

  lim

  ∆ x → 0 [ f ( ∆ x +x ) ⋅ g

  ( x )

  ⋅ g ( ∆ x+x )

  ∆ x ]

  lim

  ∆ x →0 [

  1

  g ( ∆ x+x ) ⋅ g ( x )

  ] ] y

  2 '

  lim

  = lim

  ∆ x ]

  ]

  ]

  y

  2 '

  = lim

  ∆ x→ 0 [

  lim

  ∆ x → 0 [ f ( ∆ x+ x ) ⋅ g ( x ) − f ( x ) ⋅ g ( ∆ x+ x ) g

  ( ∆ x+ x

  ) ⋅ g ( x

  )

  1

  ∆ x ]

  y

  2 '

  2 '

  = lim

  ∆ x→ 0 [

  lim

  ∆ x → 0 [ f ( ∆ x+ x ) ⋅ g

  ( x )

  −

  f ( x ) ⋅ g

( ∆ x+ x )

  ∆ x

  1

  g ( ∆ x +x ) ⋅ g ( x )

  ] ]

  y

  • f ( x ) ⋅ g

  f ∆ x+x f x g x f x g ∆ x+ x g x ( ) − ( ) ( ) ( ) ( ) − ( )

  ' { } { }

  1

  y = lim lim − lim lim

  2 ∆ x→ 0 ∆ x→ 0 ∆ x ∆ x →0 ∆ x ∆ x→ 0 g ( ∆ x +x ) ( x )

  [ ] [ ] ⋅ g [ ]

  [ ]

  [ ] f ∆ x+x f x g ∆ x+ x g x

  ( ) − ( ) ( ) − ( )

  1

  ' y = lim lim lim ( x ) ( x ) lim

  [ g ]− lim [ f ] lim

  2 ∆ x

  ∆ x ( ) ( ) ∆ x→ 0 ∆ x→ 0 ∆ x→ 0 ∆ x→ 0 ∆ x →0 ∆ x→ 0 g ∆ x + x ⋅ g x

  [ ] [ ] [ ] [ [

  ] ] '

  1

  y = lim ( x ) g ( x ) − f ( x ) g ' ( x )

  [ f ' ]

  2 ∆ x→ 0 g ( x ) ⋅g ( x )

  [ ] '

  1

  ( x ) g ( x ) − f ( x ) g ' ( x ) 2 =[ f ' ]

  y

  ( ) ( ) g x ⋅ g x

  '

  1

  ( x ) g ( x ) − f ( x ) g ' ( x ) 2 =[ f ' ]

  2

  y

  ( x )

  [ g ]

  f ' ( x ) g ( x ) f ( x ) g ' ( x ) '

  2

  2

  y

  = ⋯ ( 2 )

  x

  [ g ( ) ]

  (

  1 ) ( 2 ) Dari dan

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ' f ' x g xf x g ' x ' f ' x g xf x g ' x y

  = =

  1 2 dan y

  2 2 , maka x x

  [ g ( ) ] [ g ( ) ]

  f ( x ) f ' ( x ) ' ' y = lim

  Jika y = , maka lim

  1

  2 x →c g ( x ) x →c g ' ( x )

  ( x ) ( x )

  = = Contoh: Jika diketahui f sin 2 x dan g 3 x pada saat x=0, maka sin 2 x tentukan lim 3 x !

  x →0 ( x ) sin 2 x

  = Diketahui: f

  g ( x ) = 3 x ( ) f x

  Ditanya: ' ?

  g x ( )

  [ ]

  Jawab:

  ( ) f x = sin 2 x f ' ( x ) 2 cos 2 x

  =

  g ( x ) 3 x

  =

  g ' ( x ) =

  3

  ( ) ( ) f x f ' x

  lim lim =

  x →0 g ( x ) x→ 0 g ' ( x )

  2 cos2 x

  ¿ lim

  3

  x→ 0

  2cos 0

  ¿

  3 2 ( 1 )

  ¿

  3

  2

  ¿

  3 sin 2 x

  2 Jadi, lim 3 x =

  3

  x →0

D. Integral Fungsi Trigonometri

  Misal:

  f ( x ) cos x

  =

  ∫ f ( x ) dx=

  cos 12 (

x+h+ x

  f ( x ) = sin xf ( x ) dx=−cos x +C

  Misal:

  h ¿ sin x+C

  sin ( x+h ) − sin x

  h→ 0

  lim

  ¿

  ) h

  ( x +hx

  2

  1

  sin

  )

  2

  Jika f

  ¿ lim h→ 0

  ) h

  ( h

  2

  1

  sin

  )

  2 x +h

  cos 12 (

  2

  ¿ lim h→ 0

  ( h )

h

  2

  1

  Rumus Integral Fungsi Trigonometri

  ( x )

  ) )

  2 x, maka

  ∫

  ∫ f ( x ) dx=

  = 2 cos2 x, maka

  f ( x )

  Jawab:

  ) dx!

  ( x

  ∫ f

  = 2 cos2 x, maka hitunglah

  ( x )

  Contoh: Jika diketahui f

  ) dx=−cot x +C

  ( x

  ∫ f

  Jika f ( x ) = csc

  = cos x, maka

  ) dx=tan x +C

  ( x

  ∫ f

  2 x, maka

  Jika f ( x ) = sec

  ) dx=−cos x +C

  ( x

  ∫ f

  = sin x, maka

  ( x )

  Jika f

  ) dx=sin x+C

  ( x

  ∫ f

  sin

  1 2 h

  ∫

  1 2 h

  lim

  ¿

  1 2 h 1 2 h

  1 2 h ) sin

  ( x +

  cos

  ¿ lim h→ 0

  1 2 h 1 2 h

  sin

  )

lim

h → 0

  1 2 h

  ( x+

  cos

  ¿ lim h→ 0

  )

  2

  ( h

  2

  1

  sin

  ( ) ) dx lim h →0

  2

  1

  ( x +

  cos

  ∫

  1dx ¿

  cos x

  ¿ ∫

  cos x dx

  h→ 0

  cos ( x +

  (

x +

  h 1 ¿

  2

  (

  2

  1

  2 cos

  h ¿ lim h→ 0

  1 2 h

  sin

  

)

  1 2 h

  ( x +

  2 cos

  h→ 0

  lim

  1 2 h

  1 2 h

  sin

  

)

  1 2 h

  cos ( x +

  2

  ¿ lim h→ 0

  2

  1

  2

  1

  h

  1 2 h

  sin

  

)

  2 cos2 x dx

  ¿

  2

  ∫

  cos2 x dx

  ¿

  2

  • C

  [

  1 2 sin 2 x

  ]

  ¿

  sin 2 x+C Jadi,

  ∫ f

  ( x

  ) dx=sin 2 x +C