Persamaan Regresi Analisis Regresi Linier Sederhana

2.2 Persamaan Regresi

Persamaan regresi regression equation adalah suatu persamaan matematis yang mendefinisikan hubungan antara dua variabel. Persamaan regresi yang digunakan untuk membuat taksiran mengenai variabel dependen disebut persamaan regresi estimasi, yaitu suatu formula matematis yang menunjukkan hubungan keterkaitan antara satu atau beberapa variabel yang nilainya sudah diketahui dengan satu variabel lain yang nilainya belum diketahui. Sifat hubungan antara variabel dalam persamaan regresi merupakan hubungan sebab akibat. Oleh karena itu, sebelum menggunakan persamaan regresi dalam menjelaskan hubungan antara dua atau lebih variabel, maka perlu diyakini terlebih dahulu bahwa secara teoritis atau perkiraan sebelumnya, dua atau lebih variabel tersebut memiliki hubungan sebab akibat. Variabel yang nilainya akan mempengaruhi nilai variabel lain disebut dengan variabel bebas independent variable, sedangkan variabel yang nilainya dipengaruhi oleh nilai variabel lain disebut variable terikat dependent variable.

2.3 Analisis Regresi Linier Sederhana

Regresi linier sederhana digunakan untuk mendapatkan hubungan matematis dalam bentuk suatu persamaan antara variabel tak bebas dengan variabel bebas tunggal. Regresi linier sederhana hanya memiliki satu perubahan regresi linier untuk populasi adalah Universitas Sumatera Utara Y= a + bx 2.1 Keterangan: Y = Subyek dalam variabel dependen yang diprediksikan X = Subyek pada variabel independen yang mempunyai nilai tertentu. a = parameter intercept b = parameter koefisien regresi variabel bebas Persamaan model regresi sederhana hanya memungkinkan bila pengaruh yang ada itu hanya dari independent variable variabel bebas terhadap dependent variable variabel tak bebas. Jadi harga b merupakan fungsi dari koefisien korelasi. Bila koefisien korelasi tinggi, maka harga b juga besar, sebaliknya bila koefisien korelasi negatif maka harga b juga negatif, dan sebaliknya bila koefisien korelasi positif maka harga b juga positif Sudjana,2001.

2.4 Analisis Regresi Linier Berganda