The case 2 p 3 getdocf88e. 224KB Jun 04 2011 12:05:13 AM

Adding this to 4.4 yields 2.11, since φ ′′ p r ≥ 0: see Lemma 3.1 v. 6 ◦ The condition 2.12. If z p | y| |x| 0, then – V p y y |x|, | y| − V p y |x|, | y| | y| ™ 〈 y ′ , k 〉 2 = pp − 2| y| p −2 〈 y ′ , k 〉 2 ≤ 0 and V p y |x|, | y| | y| |k| 2 = p| y| p −2 |k| 2 . Therefore, combining this with 4.2 and 4.3 we see that the left-hand side of 2.12 is not larger than − p| y| p −2 |h| 2 − |k| 2 − p[p − 1z −p p |x| p −2 − | y| p −2 ]|h| 2 ≤ −p| y| p −2 |h| 2 − |k| 2 , 4.6 as needed. Here in the last passage we have used the estimates z −1 p |x| | y| and z 2 p ≤ p − 1 see Corollary 3.3. On the other hand, if 0 z p | y| |x|, then recall the function F p given by 3.7. A little calculation yields – V p y y |x|, | y| − V p y |x|, | y| | y| ™ 〈 y ′ , k 〉 2 = α p | y| p −2 F p r〈 y ′ , k 〉 2 , which is nonpositive by means of Lemma 3.2 here r = |x|| y|, as before. Furthermore, by 3.3, V y |x|, | y| | y| = α p | y| p −2 h pφ p r − rφ ′ p r i |k| 2 = −α p | y| p −2 φ ′′ p r|k| 2 , which, combined with 4.4 and 4.5 implies that the left-hand side of 2.12 does not exceed α p | y| p −2 φ ′′ p r|h| 2 − |k| 2 . 7 ◦ The bound 2.3. In view of the above reasoning, we have to take c 1 x, y = p| y| p −2 and c 2 x, y = −α p | y| p −2 φ ′′ p r. It is evident that the estimate 2.3 is valid for this choice of c i , i = 1, 2.

4.2 The case 2 p 3

Let V p : [0, ∞ × [0, ∞ → R be given by V p x, y = α p x p φ p yx if y ≥ z p x , y p − z p p x p if y ≤ z p x , where α p = z p φ p −1 z p −1 . 4.7 Let S 1 = {x, y ∈ H × H : 0 | y| z p |x|} and S 2 = {x, y ∈ H × H : | y| z p |x| 0}. 541 As in the previous case, we will verify that V p enjoys the requirements listed in Section 2. 1 ◦ Regularity . Clearly, we have that V p is continuous, of class C 1 on 0, ∞ × 0, ∞ and of class C 2 on 0, ∞ × 0, ∞ \ {x, y : y = z p x }. Hence U p given by 2.7 has the necessary smoothness. In addition, it is easy to see that the first order derivative of U p is bounded on bounded sets. 2 ◦ The growth condition 2.8. This is guaranteed by the asymptotics 3.5. 3 ◦ The inequality 2.9 This is obvious: V p x, y ≤ x p 1 − z p p ≤ 0 if x ≥ y ≥ 0. 4 ◦ The majorization 2.10. This can be established exactly in the same manner as in the previous case. In fact one can show that the majorization is strict provided y z p x . The details are left to the reader. 5 ◦ The condition 2.11. Note that if 0 | y| z p |x|, then – V p x x |x|, | y| − V p x |x|, | y| |x| ™ 〈x ′ , h 〉 2 = −pp − 2z p p |x| p −2 〈x ′ , h 〉 2 ≤ 0 4.8 and V p x |x|, | y| |x| |h| 2 = −pz p p |x| p −2 |h| 2 ≤ 0, 4.9 so 2.11 follows. Suppose then, that | y| z p |x| 0 and recall F p introduced in Lemma 3.2. By means of this lemma, after some straightforward computations, one gets – V p x x |x|, | y| − V p x |x|, | y| |x| ™ 〈x ′ , h 〉 2 = α p |x| p −2 F p r 〈x ′ , h 〉 2 ≤ 0, 4.10 where we have set r = | y||x|. Moreover, by 3.3, V p x |x|, | y| |x| |h| 2 = α p h pφ p r − rφ ′ p r i |x| p −2 |h| 2 = −α p φ ′′ p r |x| p −2 |h| 2 4.11 is nonpositive; this completes the proof of 2.11. 6 ◦ The condition 2.12. If 0 | y| z p |x|, then – V p y y |x|, | y| − V p y |x|, | y| | y| ™ 〈 y ′ , k 〉 2 = pp − 2| y| p −2 〈 y ′ , k 〉 2 ≤ pp − 2| y| p −2 |k| 2 and V p y |x|, | y| | y| |k| 2 = p| y| p −2 |k| 2 . Therefore, combining this with 4.8 and 4.9 we see that the left-hand side of 2.12 can be bounded from above by pp − 1| y| p −2 |k| 2 − pz p p |x| p −2 |h| 2 ≤ pp − 1z p −2 p |x| p −2 |k| 2 − pz p p |x| p −2 |h| 2 ≤ −pz p p |x| p −2 |h| 2 − |k| 2 . 4.12 542 Here in the latter passage we have used Corollary 3.3. If | y| z p |x| 0, then, again using the notation r = | y||x|, – V p y y |x|, | y| − V p y |x|, | y| | y| ™ 〈 y ′ , k 〉 2 = α p |x| p −2 h φ ′′ p r − r −1 φ ′ p r i 〈 y ′ , k 〉 2 ≤ α p |x| p −2 h φ ′′ p r − r −1 φ ′ p r i |k| 2 and V p y |x|, | y| | y| |k| 2 = α p |x| p −2 r −1 φ ′ p r|k| 2 . Combining this with 4.10 and 4.11, we get that the left-hand side of 2.12 does not exceed −α p |x| p −2 φ ′′ p r|h| 2 − |k| 2 . 7 ◦ The bound 2.3. By the above considerations, we are forced to take c 1 x, y = pz p p |x| p −2 and c 2 x, y = α p |x| p −2 φ ′′ p r and it is clear that the condition is satisfied. This establishes 1.4 for 2 p 3.

4.3 The case p

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52