The case p getdocf88e. 224KB Jun 04 2011 12:05:13 AM

Here in the latter passage we have used Corollary 3.3. If | y| z p |x| 0, then, again using the notation r = | y||x|, – V p y y |x|, | y| − V p y |x|, | y| | y| ™ 〈 y ′ , k 〉 2 = α p |x| p −2 h φ ′′ p r − r −1 φ ′ p r i 〈 y ′ , k 〉 2 ≤ α p |x| p −2 h φ ′′ p r − r −1 φ ′ p r i |k| 2 and V p y |x|, | y| | y| |k| 2 = α p |x| p −2 r −1 φ ′ p r|k| 2 . Combining this with 4.10 and 4.11, we get that the left-hand side of 2.12 does not exceed −α p |x| p −2 φ ′′ p r|h| 2 − |k| 2 . 7 ◦ The bound 2.3. By the above considerations, we are forced to take c 1 x, y = pz p p |x| p −2 and c 2 x, y = α p |x| p −2 φ ′′ p r and it is clear that the condition is satisfied. This establishes 1.4 for 2 p 3.

4.3 The case p

≥ 3 Let V p : [0, ∞ × [0, ∞ → R be defined as follows. First, set V p x, y = α p R p cos  p  π 2 − θ ‹‹ , if π2 − π2p ≤ θ ≤ π2. Here α p = cos p −1 π 2p sin π 2p and we have used polar coordinates: x = R cos θ , y = R sin θ , with θ ∈ [0, π2]. For remaining values of θ , take V p x, y = y p − cot p π 2p x p . In addition, let S 1 = {x, y ∈ H × H : π2 − π2p θ π2} and S 2 = {x, y ∈ H × H : 0 θ π2 − π2p}, with the similar convention as above: |x| = R cos θ and | y| = R sin θ for θ ∈ [0, π2]. In the proof of 1.4 we will need the following auxiliary fact. Lemma 4.1. If β ∈ 0, π2p], then cot p −1 β cotp − 1β ≥ cot p π 2p . 4.13 Furthermore, the inequality is strict if β 6= π2p. 543 Proof. Both sides are equal for β = π2p, so it suffices to show that the left-hand side is decreasing as a function of β ∈ 0, π2p. If we calculate the derivative, we see that this is equivalent to the inequality sin2β sin2p − 1β. But this follows immediately from the bounds 0 2β 2p − 1β π − 2β. Furthermore, due to the complexity of the calculations, it is convenient to gather the bounds for the partial derivatives of V p in a separate lemma. Lemma 4.2. i For any x, y 0 with y cotπ2px we have V p x x x, yx ≥ V p x x, y 4.14 and V p y y x, y y ≥ V p y x, y 4.15 ii For any x , y 0 with y cotπ2px we have V p x x x, yx ≤ V p x x, y, 4.16 V p y y x, y y ≥ V p y x, y 4.17 and x V p y y x, y + V p x x, y ≤ 0. 4.18 Proof. i We derive that V p x x, y = α p pR p −1 sin  p − 1  π 2 − θ ‹‹ and V p x x x, y = −α p pp − 1R p −2 cos  p − 2  π 2 − θ ‹‹ , 4.19 so 4.14 is equivalent to −p − 1 cos  p − 2  π 2 − θ ‹‹ sin  π 2 − θ ‹ + sin  p − 1  π 2 − θ ‹‹ ≥ 0, or −p − 2 cos  p − 2  π 2 − θ ‹‹ sin  π 2 − θ ‹ + sin  p − 2  π 2 − θ ‹‹ cos  π 2 − θ ‹ ≥ 0 for θ ∈ π2 − π2p, π2. This holds true, since both sides are equal for θ = π2 and the derivative of the left-hand side equals 3 − pp − 1 sin  p − 2  π 2 − θ ‹‹ sin  π 2 − θ ‹ ≤ 0. To prove 4.15, we carry out similar calculations and transform the estimate into the equivalent form p − 2 cos  p − 2  π 2 − θ ‹‹ cos  π 2 − θ ‹ + sin  p − 2  π 2 − θ ‹‹ sin  π 2 − θ ‹ ≥ 0, 544 for θ ∈ π2 − π2p, π2. Denoting the left-hand side by Fθ , we easily check that F π 2 − π 2p = p − 3 cos p − 2 π 2p cos π 2p + cos p − 3 π 2p ≥ 0 and F ′ θ = p − 1p − 3 sin  p − 2  π 2 − θ ‹‹ sin θ ≥ 0. This yields the claim. ii If y cotπ2px, then x V p x x x, y − V p x x, y = −pp − 2 cot p π 2p x p −1 ≤ 0 and y V p y y x, y − V p y x, y = pp − 2 y p −1 ≥ 0. Furthermore, x V p y y x, y + V p x x, y = p x p − 1 y p −2 − cot p π 2p x p −2 ≤ px y p −2 p − 1 − cot 2 π 2p = p x y p −2 – p − sin π 2p −2 ™ , so it suffices to show that the expression in the square brackets is nonpositive. This follows immedi- ately from sin 2 π 2p ≤ π 2p 2 = 1 p · π 2 4p ≤ 1 p and we are done. Now we are ready for the proof of 1.4. As in the previous cases, we verify that V p has the properties studied in Section 2. 1 ◦ Regularity . It is easily checked that V p is continuous, of class C 1 on 0, ∞ × 0, ∞ and of class C 2 outside {x, y : θ = π2 − π2p}. This guarantees the appropriate smoothness of U p given by 2.7. Furthermore, it is clear that the first order derivative of U p is bounded on bounded sets. 2 ◦ The growth condition 2.8. This is clear from the very formula for the function V p . 3 ◦ The condition 2.9. This is obvious: for x ≥ y ≥ 0 we have V p x, y = y p − cot p π 2p x p ≤ x p 1 − cot p π 2p ≤ 0. 4 ◦ The majorization 2.10. Clearly, it suffices to show this inequality on the set {x, y : θ π2 − π2p}, where it can be rewritten in the form sin p θ − cot p π 2p cos p θ ≤ cos p −1 π 2p sin π 2p cos  p  π 2 − θ ‹‹ 545 or, after substitution β = π2 − θ ∈ [0, π2p, cos p β − cot p π2p sin p β cospβ ≤ cos p −1 π 2p sin π 2p . Since both sides become equal when we let β → π2p, it suffices to show that the left-hand side, as a function of β , is nondecreasing on 0, π2p. Differentiating, we see that this is equivalent to 4.13. In fact, we have that the majorization is strict on {x, y : θ π2 − π2p} since 4.13 is strict for β π2p. 5 ◦ The condition 2.11. If x, y ∈ H × H satisfies | y| cotπ2p|x| 0, then by 4.14 and 4.19 we have that – V p x x |x|, | y| − V p x |x|, | y| |x| ™ 〈x ′ , h 〉 2 + V p x |x|, | y| |x| |h| 2 ≤ V p x x |x|, | y||h| 2 ≤ 0. On the other hand, if 0 | y| cotπ2p|x|, then, by 4.16, – V p x x |x|, | y| − V p x |x|, | y| |x| ™ 〈x ′ , h 〉 2 + V p x |x|, | y| |x| |h| 2 ≤ V p x |x|, | y| |x| |h| 2 = −pC p p |x| p −2 |h| 2 ≤ 0, as needed. 6 ◦ The condition 2.12. If | y| cotπ2p|x| 0, then by 4.14 and 4.15, the left-hand side of 2.12 does not exceed V p x x |x|, | y||h| 2 + V p y y |x|, | y||k| 2 ≤ V p x x |x|, | y||h| 2 − |k| 2 , 4.20 since V p x x |x|, | y| ≤ 0 and V p is harmonic on {x, y : y cotπ2px 0}. If we have 0 | y| cotπ2p |x|, then by 4.16, 4.17 and 4.18 the left-hand side is not larger than V p x |x|, | y| |x| |h| 2 + V p y y |x|, | y||k| 2 ≤ −V p y y |x|, | y||h| 2 − |k| 2 . 4.21 7 ◦ The bound 2.3. By 4.20 and 4.21, we take c 1 x, y = −V p x x |x|, | y| and c 2 x, y = V p y y |x|, | y|. By 4.19 and the equality V p y y |x|, | y| = pp − 1| y| p −2 it is clear that the esti- mate 2.3 is satisfied. The proof of 1.4 is complete.

4.4 Strictness

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52