Relation of A with A

230 M. Catral, D.D. Olesky, and P. van den Driessche C OROLLARY 3.9. If in addition to the assumptions of Corollary 3.8, A is nonnegative, then A is sign determined. Specifically, A = α i j has a diagonally-striped sign pattern with α i j = 0 if i + j is even α i ,i±t for t = 1, 5, 9, · · · α i ,i±t for t = 3, 7, 11, · · · , where 1 ≤ i ≤ n and 1 ≤ i ± t ≤ n.

4. Relation of A with A

† for Tridiagonal Matrices. It is well-known see e.g. [3], [7] that if A is symmetric and A exists, then A = A † , the Moore-Penrose inverse of A. To explore the relation between these two inverses for irreducible tridiagonal matrices with zero diagonal which are combinatorially symmetric, we use the following notation from [4]. Let U = {u 1 , · · · , u n } and V = {v 1 , · · · , v n } be disjoint sets. For an n × n matrix A = a i j , BA is the bipartite graph with vertices U ∪ V and edges {u i , v j : u i ∈ U, v j ∈ V, a i j = 0}. For any h ≥ 1 and any bipartite graph B, M h B denotes the family of subsets of h distinct edges of B, no two of which are adjacent. T HEOREM 4.1. Let k ≥ 1 and A = a i j ∈ R 2k +1×2k+1 be an irreducible tridiagonal matrix with zero diagonal and assume that ∆ A = 0. Let A = α i j , A † = µ i j and 1 ≤ i, j ≤ 2k + 1. i If the path from i to j in D A is of even length or if i = j, then α i j = µ i j = 0. ii If α i j = 0, then µ i j = 0. iii If γ i, j = 0, then α i j = 0 if and only if µ i j = 0. Proof. By Corollary 3.8 and [4, Corollary 2.7], α ii = µ ii = 0 for all i. Let 1 ≤ i j ≤ 2k + 1. By Corollary 3.8, 4.1 α i j = 1 ∆ A −1 s a i ,i+1 a i +1,i+2 a i +2,i+3 · · · a j −2, j−1 a j −1, j γ i, j if the path from i to j in D A is of length 2s + 1 with s ≥ 0, and α i j = 0 otherwise. According to [4, Corollary 2.7], µ ji = 0 if and only if BA contains a path p from u i to v j p : u i → v i +1 → u i +2 → v i +3 → · · · → v j −2 → u j −1 → v j of length 2s + 1 with s ≥ 0, and M r −s−1 BA has at least one element with r − s − 1 edges none of which are adjacent to p, where r = 2k is the rank of A. Note that by the theorem assumptions on A, if a path p from u i to v j in B A of length 2s + 1, with s ≥ 0, exists, then the latter condition on M r −s−1 BA and the path p always holds. Furthermore, by [4, Corollary 2.7], if such a path exists, then µ ji has the same sign as 4.2 −1 s a i ,i+1 a i +2,i+1 a i +2,i+3 · · · a j −1, j−2 a j −1, j . Since A is an irreducible tridiagonal matrix with zero diagonal, it is combinatorially symmetric i.e., a i j = 0 if and only if a ji = 0. Thus, there is a path of length 2s + 1 from i to http:math.technion.ac.iliicela Group Inverses of Matrices with Path Graphs 231 j in D A if and only if there is a path of length 2s + 1 from u j to v i in B A. If no such path of odd length exists, then α i j = µ i j = 0, completing the proof of i. If α i j = 0, then by 4.1, the path from i to j in D A is of length 2s + 1 with s ≥ 0. Thus, using 4.1, 4.2 and by combinatorial symmetry, µ i j = 0, proving ii and one direction of iii. Lastly, if γ i, j = 0 and µ i j = 0, then α i j = 0 by a similar argument. This completes the proof of iii and hence the theorem for i ≤ j. The proof for i j is similar. The following example illustrates that the condition γ i, j = 0 in iii above is necessary. E XAMPLE 4.2. Consider the 5 × 5 tridiagonal matrix A =        1 1 1 −1 1 1 1 1        , having A † = 1 3        2 −1 2 −1 1 1 1 1 1 2 −1 2        and A =        2 −1 2 1 −1 −1 1 1 1 1        . Here the 4, 5 and 5, 4 entries of A are zero since γ 4, 5 = 0, whereas the corresponding entries of A † are nonzero. Theorem 4.1 shows that for an irreducible tridiagonal matrix A, the nonzero entries of A are a subset of the nonzero entries of A † . However, this is not in general true for a matrix A with D A bipartite, as is shown in the following example. E XAMPLE 4.3. Consider the following 5 × 5 matrix A which has DA bipartite, but not http:math.technion.ac.iliicela 232 M. Catral, D.D. Olesky, and P. van den Driessche a tree graph: A =        a 13 a 15 a 24 a 32 a 41 a 51        . By Corollary 2.3, the 2, 4 entry of A is −a 15 a 51 a 13 a 32 a 41 , whereas by [4, Theorem 2.6], the 2, 4 entry of A † is zero since there is no path in B A from u 4 to v 2 .

5. Conjecture. We conclude with a conjecture and some related remarks. Recall that if

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52