A for a Matrix with a Path Graph. Let k

224 M. Catral, D.D. Olesky, and P. van den Driessche

3. A for a Matrix with a Path Graph. Let k

≥ 1. For the path graph DA on n = 2k vertices, A is nonsingular and A = A −1 and a graph-theoretic description of the entries of A −1 is known; see Theorem 3.5 below. So we consider the path graph D A with an odd number of vertices, for which A is singular. For n = 2k + 1, if DA is the bipartite path graph, then its associated matrix A is as in 1.1 with 3.1 B =          a 1 ,k+1 a 1 ,k+2 · · · a 2 ,k+2 a 2 ,k+3 · · · a 3 ,k+3 . . . .. . .. . . . . . . . . . . · · · a k ,2k a k ,2k+1          ∈ R k ×k+1 and 3.2 C =             a k +1,1 · · · a k +2,1 a k +2,2 · · · a k +3,2 . . . .. . . . . . . . .. . . . . a 2k ,k−1 a 2k ,k · · · a 2k +1,k             ∈ R k+1×k , where each specified entry a i j is nonzero. Then rank B = rank C = k, and the entries of the k × k tridiagonal matrix BC are as follows: 3.3 BC ii = a i ,k+i a k +i,i + a i ,k+i+1 a k +i+1,i if 1 ≤ i ≤ k BC i ,i+1 = a i ,k+i+1 a k +i+1,i+1 if 1 ≤ i ≤ k − 1 BC i +1,i = a i +1,k+i+1 a k +i+1,i if 1 ≤ i ≤ k − 1 BC i j = 0 otherwise . In Proposition 3.2 below, it is proved that the determinant of the matrix BC is equal to the sum of maximal matchings in D A. The following simple observations are used in the succeeding proofs. L EMMA 3.1. Let A = B C with B ,C as in 3.1 and 3.2, respectively, i.e., DA is the bipartite path graph on 2k + 1 vertices. In DA and for 1 ≤ j ≤ k + 1, the following relations hold. 3.4 γ [k + j, k + j + 1] = γ [k + j, j] + γ [ j, k + j + 1], j = k + 1. 3.5 P A [ j → j + 1]P A [ j + 1 → j] = γ [ j, k + j + 1] γ [k + j + 1, j + 1], j = k + 1. http:math.technion.ac.iliicela Group Inverses of Matrices with Path Graphs 225 3.6 γ [k + 1, k + j] = γ [ j − 1, k + j] γ [k + 1, k + j − 1] + γ [k + 1, j − 1], j = 1. 3.7 γ [k + 1, j] = γ [ j, k + j] γ [k + 1, j − 1], j = 1, k + 1. 3.8 γ i, j = γ [k + 1, k + i] γ [k + j + 1, 2k + 1], 1 ≤ i j ≤ k. In the following, BC [ j; ℓ] denotes the principal submatrix of BC in rows and columns j , · · · , ℓ. P ROPOSITION 3.2. For k ≥ 1, let DA be the bipartite path graph on 2k +1 vertices, i.e., A = B C with B ,C as in 3.1 and 3.2, respectively. Then for 1 ≤ t ≤ k, det BC[1;t] = γ [k + 1, k + t + 1] . Proof. We use induction on t. First note, from 3.3, that the k × k matrix BC can be written as 3.9            γ [k + 1, k + 2] P A [1 → 2] · · · P A [2 → 1] γ [k + 2, k + 3] P A [2 → 3] . . . .. . P A [3 → 2] . . . . . . .. . . . . . . . γ [2k − 1, 2k] P A [k − 1 → k] · · · P A [k → k − 1] γ [2k, 2k + 1]            . If t = 1, then det BC[1; 1] = γ [k + 1, k + 2] = γ [k + 1, k + t + 1] as desired. Now suppose that for 2 ≤ g ≤ k the result is true for all t ≤ g − 1; thus, for example, 3.10 det BC [1; g − 1] = γ [k + 1, k + g] and 3.11 det BC [1; g − 2] = γ [k + 1, k + g − 1]. Note that BC [1; 0] is vacuous and det BC[1; 0] = 1. Letting t = g and expanding the deter- http:math.technion.ac.iliicela 226 M. Catral, D.D. Olesky, and P. van den Driessche minant about the last row of BC [1; g], det BC [1; g] = γ [k + g, k + g + 1] detBC[1; g − 1] − P A [g − 1 → g]P A [g → g − 1] detBC[1; g − 2] = γ [k + g, g] + γ [g, k + g + 1] γ [k + 1, k + g] − γ [g − 1, k + g] γ [k + g, g] γ [k + 1, k + g − 1] by 3.4, 3.5, 3.10 and 3.11 = γ [g, k + g + 1] γ [k + 1, k + g] + γ [g, k + g] γ [k + 1, g − 1] by 3.6 = γ [g, k + g + 1] γ [k + 1, k + g] + γ [k + 1, g] by 3.7 = γ [k + 1, k + g + 1] by 3.6. C OROLLARY 3.3. For k ≥ 1, let DA be the bipartite path graph on 2k + 1 vertices, i.e., A = B C with B ,C as in 3.1 and 3.2, respectively. Then det BC = γ [k + 1, 2k + 1] = ∆ A . In the following, W i respectively W i; ,W ; j denotes the submatrix obtained from a matrix W by deleting both row and column i respectively row i, column j. C OROLLARY 3.4. For k ≥ 1, let DA be the bipartite path graph on 2k + 1 vertices, i.e., A = B C with B ,C as in 3.1 and 3.2, respectively. For 1 ≤ i ≤ k, let DAi be the associated digraph obtained by deleting vertex i from D A. Then Bi; C; i = BCi, det BC 1 = γ [k + 2, 2k + 1], det BC k = γ [k + 1, 2k] and det BC i = γ [k + 1, k + i] γ [k + i + 1, 2k + 1], i = 1, k. Proof. These results follow from the structure of B and C, and the fact that D A1, D Ak can be re-labeled to be bipartite path graphs on 2k − 1 vertices along with one isolated vertex, while D Ai for i = 1, k consists of two disjoint path graphs that can be re-labeled to be bipartite path graphs on 2i − 1 and 2k − i + 1 vertices. For ∆ A = 0, Proposition 3.6 below gives the entries of BC −1 in terms of path products and matchings in D A. The proof uses the following theorem, stated for tree graphs in [9] and for general digraphs in [11], which we restate here for digraphs D W with tridiagonal W . http:math.technion.ac.iliicela Group Inverses of Matrices with Path Graphs 227 T HEOREM 3.5. [9, 11] Let W be an n × n nonsingular tridiagonal matrix with digraph D W , and let W −1 = ω i j . Then 3.12 ω ii = detW i detW , and 3.13 ω i j = 1 detW −1 ℓ P W [i → j] detW i, · · · , j, where ℓ is the length of the path from i to j, W i is the matrix obtained from W by deleting row and column i, and W i, · · · , j is the matrix obtained from W by deleting rows and columns corresponding to the vertices on the path from i to j. In the next two results, we set P A [i → i] = 1 and γ i, i = γ [k + 1, k + i] γ [k + i + 1, 2k + 1]. P ROPOSITION 3.6. Let A = B C with B ,C as in 3.1 and 3.2, respectively, and assume that ∆ A = 0. Then BC −1 = β i j exists and is given by 3.14 β i j = 1 ∆ A −1 i + j P A [i → j] γ i, j. Proof. From Corollary 3.3, det BC = ∆ A and the assumption ∆ A = 0 implies that BC −1 exists. We apply Theorem 3.5 to the tridiagonal matrix BC as in 3.9. Let 1 ≤ i, j ≤ k. If i = j, then by Corollary 3.4, β 11 = γ [k + 2, 2k + 1] ∆ A , β kk = γ [k + 1, 2k] ∆ A , and β ii = γ [k + 1, k + i] γ [k + i + 1, 2k + 1] ∆ A , for i = 1 or k, which agree with 3.14. If i j, with i = 1 and j = k, then removing the vertices on the path i, · · · , j in DA results in two disjoint path graphs on vertices k + 1, · · · , k + i and k + j + 1, · · · , 2k + 1, re- spectively. As these can be re-labeled to be bipartite path graphs, Proposition 3.2 gives det BC i, · · · , j = det BC [1; i − 1] detBC[ j + 1; k] = γ [k + 1, k + i] γ [k + j + 1, 2k + 1]. If i = 1, then det BCi, · · · , j = det BC[ j + 1; k] = γ [k + j + 1, 2k + 1]; if j = k, then det BC i, · · · , j = det BC[1; i− 1] = γ [k + 1, k + i]. For all i j, the i, j entry β i j of BC −1 is http:math.technion.ac.iliicela 228 M. Catral, D.D. Olesky, and P. van den Driessche computed, using Theorem 3.5, with the path product in 3.13 taken from the digraph D BC. From 3.9, the path product P BC [i → j] is given by the product P A [i → i + 1]P A [i + 1 → i + 2] · · · P A [ j − 1 → j] of j − i path products in the path graph DA. This path product is equal to P A [i → j]. It follows from 3.13 and the above that β i j = 1 ∆ A −1 j −i P A [i → j] γ [k + 1, k + i] γ [k + j + 1, 2k + 1] = 1 ∆ A −1 i + j P A [i → j] γ i, j by 3.8. The proof for the case i j can be obtained by switching the roles of i and j in the above argument, completing the proof for i = j. The next theorem is the main result of this section. T HEOREM 3.7. Let A = B C be a matrix of order 2k + 1 with B,C as in 3.1 and 3.2, respectively. Assume that ∆ A = 0. Then the group inverse A = α i j exists and 3.15 α i j =          1 ∆ A −1 s P A [i → j] γ i, j if the path in D A from i to j is of length 2s + 1 with s ≥ 0, otherwise . Proof. The assumption ∆ A = 0 together with Corollary 3.3 imply that rank BC = k. In addition, CB is a tridiagonal matrix of order k + 1 with a nonzero superdiagonal. Thus, rank CB ≥ k and since rank CB ≤ rank B = k, it follows that rank CB = k. Hence, rankB = rankC = rankBC = rankCB = k, and by Corollary 2.3, the group inverse A exists with entries α i j given by 3.16 α i j =        BC −1 B i , j−k if i, j ∈ {1, · · · , k} × {k + 1, · · · , 2k + 1}, CBC −1 i −k, j if i, j ∈ {k + 1, · · · , 2k + 1} × {1, · · · , k}, otherwise . Let i, j ∈ {1, · · · , 2k + 1} × {1, · · · , 2k + 1}. Note that DA is the bipartite path graph on 2k + 1 vertices. The path from i to j is of even length if and only if i, j is in {1, · · · , k} × {1, · · · , k} or {k + 1, · · · , 2k + 1} × {k + 1, · · · , 2k + 1}. It follows from 3.16 that α i j = 0 if the path from i to j is of even length or if i = j. Now assume that the path from i to j is of odd length. Then either i, j ∈ {1, · · · , k} × {k + 1, · · · , 2k + 1} or i, j ∈ {k + 1, · · · , 2k + 1 } × {1, · · · , k}. http:math.technion.ac.iliicela Group Inverses of Matrices with Path Graphs 229 Suppose that i, j ∈ {1, · · · , k} × {k + 1, · · · , 2k + 1}, and set j ′ = j − k. Then from 3.16 and 3.14, α i j = BC −1 B i j ′ = 1 ∆ A k ∑ m =1 −1 i +m P A [i → m] γ i, ma m j . Hence for j = k + 1, α i ,k+1 = 1 ∆ A −1 i +1 P A [i → 1] γ i, 1a 1 ,k+1 = 1 ∆ A −1 i +1 P A [i → k + 1] γ i, k + 1. Since −1 i +1 = −1 i −1 and the path in D A from i to k + 1 has length 2i − 1 + 1, the theorem is true for j = k + 1. Similarly, the theorem is true for j = 2k + 1, so suppose that j = k + 1, 2k + 1. Then α i j = 1 ∆ A −1 i + j ′ P A [i → j ′ ] γ i, j ′ a j ′ j − P A [i → j ′ − 1] γ i, j ′ − 1a j ′ −1, j . Suppose that 1 ≤ i j ′ = j − k ≤ k. Then α i j = 1 ∆ A −1 i + j ′ P A [i → j] γ i, j ′ γ [ j ′ , j] − γ i, j ′ − 1 = 1 ∆ A −1 j ′ −i−1 P A [i → j] γ i, j. Since the path in D A from i to j has length 2 j ′ − i − 1 + 1, the theorem is true for all such i, j. Now suppose that 2 ≤ i, j ′ ≤ k and i ≥ j ′ = j − k. Then α i j = 1 ∆ A −1 i + j ′ P A [i → j] γ i, j ′ − γ i, j ′ − 1 γ [ j ′ − 1, j] = 1 ∆ A −1 i − j ′ P A [i → j] γ i, j. Since the path in D A from i to j has length 2i − j ′ + 1, the theorem is true for all such i, j, and thus for all i, j ∈ {1, · · · , k} × {k + 1, · · · , 2k + 1}. The proof for i, j ∈ {k + 1, · · · , 2k + 1} × {1, · · · , k} is similar. The next two results follow since an irreducible tridiagonal matrix with zero diagonal is permutationally similar to the matrix in Theorem 3.7. C OROLLARY 3.8. Let A be an irreducible tridiagonal matrix of order 2k + 1 with zero diagonal and a path graph D A on vertices 1, · · · , 2k + 1. Assume that ∆ A = 0. Then the group inverse A exists and its entries are given by 3.15. http:math.technion.ac.iliicela 230 M. Catral, D.D. Olesky, and P. van den Driessche C OROLLARY 3.9. If in addition to the assumptions of Corollary 3.8, A is nonnegative, then A is sign determined. Specifically, A = α i j has a diagonally-striped sign pattern with α i j = 0 if i + j is even α i ,i±t for t = 1, 5, 9, · · · α i ,i±t for t = 3, 7, 11, · · · , where 1 ≤ i ≤ n and 1 ≤ i ± t ≤ n.

4. Relation of A with A

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52