Some useful notations and some preliminary results

5 Haar Basis

5.1 Some useful notations and some preliminary results

Recall cf. 1.4 that for any parameter α 12, the Riemann-Liouville process can be written as R α t = ε −1 t α Γα + 1 + ∞ X j=0 2 j −1 X k=0 ε j,k R α h j,k t, 5.1 where R α is the Riemann-Liouville operator and the h j,k ’s are the usual Haar functions, i.e. h j,k x = 2 j 2 n 1 [ 2k 2 j+1 , 2k+1 2 j+1 x − 1 [ 2k+1 2 j+1 , 2k+2 2 j+1 x o 5.2 and where the series converges almost surely uniformly in t i.e. in the sense of the norm k · k ∞ . For any t ∈ [0, 1] and J ∈ N we set, R α J t := ε −1 t α Γα + 1 + J −1 X j=0 2 j −1 X k=0 ε j,k R α h j,k t, 5.3 e σ 2 J t := E R α t − R α J t 2 = ∞ X j=J 2 j −1 X k=0 R α h j,k t 2 5.4 and e σ 2 J := sup t ∈[0,1] e σ 2 J t. 5.5 In order to conveniently express the coefficients R α h j,k t, for any reals ν and x we set x ν + = ¨ x ν when x 0, else . 5.6 Then it follows from 4.1, 5.2 and 5.6 that one has for every integers j ∈ N := N ∪ {0} and ≤ k ≤ 2 j − 1 and real t ∈ [0, 1], R α h j,k t = 2 j 2 Γα + 1 t − 2k + 2 2 j+1 α + − 2 t − 2k + 1 2 j+1 α + + t − 2k 2 j+1 α + . 5.7 Let us now give some useful lemmas. The following lemma can be proved similarly to Lemma 1 in [2], this is why we omit its proof. Lemma 5.1. Let {ε j,k : j ∈ N , 0 ≤ k ≤ 2 j − 1} be a sequence of standard Gaussian variables. Then there exists a random variable C 1 0 of finite moment of any order such that one has almost surely, for every j ∈ N and 0 ≤ k 2 j − 1, |ε j,k | ≤ C 1 p 1 + j . 2707 Let us now give a lemma that allows to control the increments of the Riemann-Liouville process. This result is probably known however we will give its proof for the sake of completeness. Lemma 5.2. i For any α ∈ 12, 32, there is a random variable C 2 0 of finite moment of any order such that almost surely for every t 1 , t 2 ∈ [0, 1], |R α t 1 − R α t 2 | ≤ C 2 |t 1 − t 2 | α−12 p log2 + |t 1 − t 2 | −1 . 5.8 ii For any α 32, there is a random variable C 3 0 of finite moment of any order such that one has almost surely for every t 1 , t 2 ∈ [0, 1], |R α t 1 − R α t 2 | ≤ C 3 |t 1 − t 2 |. Proof. of Lemma 5.2 Part ii is a straightforward consequence of the fact that the trajectories of R α are continuously differentiable functions when α 32. Let us now prove part i. First observe see for instance relation 7.6 in [12] that inequality 5.8 is satisfied when the Riemann- Liouville process is replaced by the fractional Brownian motion fBm B H t ≤t≤1 with Hurst index H := α − 12. Recall that for some c α 0 again H and α are related via H = α − 12 B H t = Q α t + c α R α t, 5.9 where the process Q α t t ∈[0,1] is called the low-frequency part of fBm and up to a positive constant it is defined as Q α t = Z −∞ n t − x α−1 − −x α−1 o dW x. Finally, it is well-known that the trajectories of the process Q α t t ∈[0,1] are C ∞ -functions. There- fore, it follows from 5.9 that R α t ≤t≤1 satisfies 5.8 as well. Remark 5.1. It is very likely that 5.8 also holds for α = 32. But in this case our approach does not apply. Observe that α = 32 corresponds to H = 1 and 5.9 is no longer valid. For any reals γ 0 and t ∈ [0, 1] and for any integers j ∈ N and 0 ≤ k ≤ 2 j − 1 we set A γ, j,k t := t − 2k + 2 2 j+1 γ + − 2 t − 2k + 1 2 j+1 γ + + t − 2k 2 j+1 γ + . 5.10 Observe that 5.10 and 5.7 imply that R α h j,k t = 2 j 2 Γα + 1 A α, j,k t. 5.11 Furthermore, we denote by e k j t the unique integer satisfying the following property: ek j t 2 j ≤ t ek j t + 1 2 j , 5.12 with the convention that e k j 1 = 2 j − 1. The following lemma allows us to estimate R α h j,k t suitably. 2708 Lemma 5.3. i For each k ≥ ek j t + 1, one has A γ, j,k t = 0. ii There is a constant c 4 0, only depending on γ, such that the inequality |A γ, j,k t| ≤ c 4 2 − jγ 1 + e k j t − k γ−2 5.13 holds when 0 ≤ k ≤ ek j t. iii If γ 6= 1, then there is a constant c 5 0, only depending on γ, such that the inequality |A γ, j,k t| ≥ c 5 2 − jγ 1 + e k j t − k γ−2 5.14 holds when 0 ≤ k ≤ ek j t − 2. Proof. of Lemma 5.3 Part i is a straightforward consequence of 5.6, 5.10 and 5.12, so we will focus on parts ii and iii. Inequality 5.13 clearly holds when γ = 1, this is why we will assume in all the sequel that γ 6= 1. Let us first show that 5.13 is satisfied when ek j t − 1 ≤ k ≤ ek j t. 5.15 Putting together 5.12 and 5.15 one has for any l ∈ {0, 1, 2}, t − 2k + l 2 j+1 γ + ≤ t − ek j t − 1 2 j γ ≤ 2 − j−1γ . Therefore, it follows from 5.10 and 5.15 that |A γ, j,k t| ≤ 2 2 − j−1γ ≤ c 6 2 − jγ 1 + e k j t − k γ−2 , where the constant c 6 = 2 2+ γ max {1, 2 2 −γ }. Let us now show that the inequalities 5.13 and 5.14 are verified when ≤ k ≤ ek j t − 2. 5.16 We denote by f γ, j,t the function defined for every real x ≤ k2 j as f γ, j,t x = t − x − 2 − j γ − t − x − 2 − j−1 γ . By applying the Mean Value Theorem to f γ, j,t on the interval [ 2k −1 2 j+1 , k 2 j ], it follows that there exists a 1 ∈ 2k −1 2 j+1 , k 2 j such that A γ, j,k t = f γ, j,t k 2 j − f γ, j,t 2k − 1 2 j+1 = 2 − j−1 f ′ γ, j,t a 1 = −γ 2 − j−1 t − a 1 − 2 − j γ−1 − t − a 1 − 2 − j−1 γ−1 . 5.17 2709 Next, by applying the Mean Value Theorem to the function y 7→ t − a 1 − y γ−1 on the interval [2 − j−1 , 2 − j ], it follows that there exists a 2 ∈ 2 − j−1 , 2 − j such that t − a 1 − 2 − j γ−1 − t − a 1 − 2 − j−1 γ−1 = −γ − 1 2 − j−1 t − a 1 − a 2 γ−2 . 5.18 Observe that the inequalities 5.12, k 2 j a 1 + a 2 k+1 2 j and 5.16 imply that 1 2 j ≤ ek j t − k − 1 2 j t − a 1 − a 2 ek j t − k − 1 + 2 2 j ≤ 3e k j t − k − 1 2 j . 5.19 Next setting c 4 = c 6 + γ|γ − 1| max{1, 3 γ−2 } and c 5 = γ|γ − 1| min{1, 3 γ−2 } and combining 5.17 with 5.18 and 5.19, it follows that the inequalities 5.13 and 5.14 are verified when 5.16 holds.

5.2 Optimality when 1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52