Optimality when 1 Optimality when 1

Next, by applying the Mean Value Theorem to the function y 7→ t − a 1 − y γ−1 on the interval [2 − j−1 , 2 − j ], it follows that there exists a 2 ∈ 2 − j−1 , 2 − j such that t − a 1 − 2 − j γ−1 − t − a 1 − 2 − j−1 γ−1 = −γ − 1 2 − j−1 t − a 1 − a 2 γ−2 . 5.18 Observe that the inequalities 5.12, k 2 j a 1 + a 2 k+1 2 j and 5.16 imply that 1 2 j ≤ ek j t − k − 1 2 j t − a 1 − a 2 ek j t − k − 1 + 2 2 j ≤ 3e k j t − k − 1 2 j . 5.19 Next setting c 4 = c 6 + γ|γ − 1| max{1, 3 γ−2 } and c 5 = γ|γ − 1| min{1, 3 γ−2 } and combining 5.17 with 5.18 and 5.19, it follows that the inequalities 5.13 and 5.14 are verified when 5.16 holds.

5.2 Optimality when 1

2 α 1 The goal of this section is to prove the following theorem. Theorem 5.4. Suppose 1 2 α 1. Then there is a random variable C 7 0 of finite moments of any order such that one has almost surely, for every J ∈ N, kR α − R α J k ∞ ≤ C 7 2 −α−12J p 1 + J . In particular, this implies that in this case representation 5.1 possesses the optimal approximation rate. Proof. of Theorem 5.4 Putting together 5.1, 5.3, Lemma 5.1, 5.11 and 5.13, one obtains that almost surely, for every t ∈ [0, 1], and every integer J ∈ N, |R α t − R α J t| ≤ ∞ X j=J 2 j −1 X k=0 |ε j,k ||R α h j,k t| ≤ C 1 Γα + 1 −1 c 4 ∞ X j=J 2 − jα−12 p j + 1 ek j t X k=0 1 + e k j t − k α−2 ≤ C 7 2 −Jα−12 p J + 1. Observe that the condition 1 2 ≤ α 1 plays a crucial role in the proof of Theorem 5.4. Indeed, one has P ek j t k=0 1 + e k j t − k α−2 ≤ P ∞ l=1 l α−2 ∞ only when it is satisfied. 2710

5.3 Optimality when 1

α 32 The goal of this subsection is to show that the following theorem holds. Theorem 5.5. Suppose 1 α 32. Then there is a constant c 8 0 such that for every J ∈ N one has E kR α − R α J k ∞ ≤ c 8 2 −Jα−12 p J + 1. In particular, this implies that also in this case representation 5.1 possesses the optimal approximation rate. First we need to prove some preliminary results. Proposition 5.6. If 1 2 α 32, there exists a constant c 9 0 such that one has for any J ∈ N, e σ 2 J ≤ c 2 9 2 −J2α−1 . Proof. of Proposition 5.6 It follows from 5.4, 5.11 and parts i and ii of Lemma 5.3, that e σ 2 J t ≤ c 2 4 Γα + 1 −2 ∞ X j=J 2 − j2α−1 ek j t X k=0 1 + e k j t − k −22−α ≤ c 2 9 2 −J2α−1 , where the constant c 2 9 = c 2 4 Γα + 1 −2 1 − 2 −2α−1 P ∞ l=1 l −22−α ∞. Lemma 5.7. For any α ∈ 1, 32, there exists a random variable C 10 0 of finite moment of any order such that one has almost surely for any real t ∈ [0, 1] and any integer J ∈ N, R α J t − R α J ek J t2 −J ≤ C 10 2 −Jα−12 p J + 1. We refer to 5.12 for the definition of the integer e k J t. In order to be able to prove Lemma 5.7 we need the following lemma. Lemma 5.8. For any real α 1, there exists a constant c 11 0 such that for all t ∈ [0, 1], J ∈ N, j ∈ N and k ∈ N satisfying ≤ j ≤ J and 0 ≤ k ≤ ek j t, one has R α h j,k t − R α h j,k ek J t2 −J ≤ c 11 2 32−α j−J 1 + e k j t − k α−3 . 5.20 Proof. Proof of Lemma 5.8 It is clear that 5.20 holds when t = e k J t2 −J , so we will assume that t 6= ek J t2 −J . By applying the Mean Value Theorem, it follows that there exists a ∈ ek J t2 −J , t such that R α h j,k t − R α h j,k ek J t2 −J 5.21 = α2 j 2−J Γα a − 2k + 2 2 j+1 α−1 + − 2 a − 2k + 1 2 j+1 α−1 + + a − 2k 2 j+1 α−1 + . Observe that one has e k j a = ek j t since a ∈ ek J t 2 J , t ⊂ ek j t 2 j , ek j t+1 2 j . Thus, putting together, 5.21, 5.10 and 5.13 in which we replace t by a and γ by α − 1, we obtain the lemma. 2711 We are now in position to prove Lemma 5.7. Proof. of Lemma 5.7 By using Lemma 5.1 and the fact that ≤ t α − ek J t2 −J α ≤ α2 −J , one gets that R α J t − R α J 2 −J ek J t ≤ |ε −1 | α2 −J Γα + 1 + C 1 p J + 1 J −1 X j=0 2 j −1 X k=0 R α h j,k t − R α h j,k ek J t2 −J . 5.22 On the other hand, it follows from Lemma 5.8 that J −1 X j=0 2 j −1 X k=0 R α h j,k t − R α h j,k ek J t2 −J ≤ c 11 J −1 X j=0 2 32−α j−J ek j t X k=0 1 + e k j t − k α−3 ≤ c 12 2 −α−12J 5.23 where c 12 = c 11 2 3 2−α − 1 −1 P ∞ l=1 l α−3 ∞. Finally combining 5.22 with 5.23 one obtains the lemma. Lemma 5.9. There is a random variable C 13 0 of finite moments of any order such that one has almost surely for every J ∈ N sup t ∈[0,1] R α t − R α J t ≤ sup ≤K2 J , K ∈N R α K2 −J − R α J K2 −J + C 13 2 −Jα−12 p J + 1. Proof. of Lemma 5.9 Let us fix ω. As the function t 7→ R α t, ω − R α J t, ω is continuous over the compact interval [0, 1], there exist a t ∈ [0, 1] such that sup t ∈[0,1] R α t, ω − R α J t, ω = R α t , ω − R α J t , ω . Using the triangular inequality and Lemmas 5.2 i and 5.7, it follows that R α t , ω − R α J t , ω ≤ R α t , ω − R α e k J t 2 −J , ω + R α e k J t 2 −J , ω − R α J e k J t 2 −J , ω + R α J 2 −J ek J t , ω − R α J t , ω ≤ C 2 ω 2 −Jα−12 p log2 + 2 J + sup ≤K2 J ,K ∈N R α K2 −J , ω − R α J K2 −J , ω + C 10 ω 2 −Jα−12 p J + 1 and thus one gets the lemma. 2712 Proof. of Theorem 5.5 Putting together Lemma 5.9, Lemma 3.2, the fact that e σ 2 J ≥ sup ≤K2 J ,K ∈N e σ 2 J 2 −J K and Proposition 5.6 one obtains the theorem.

5.4 The case

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52