Signaling System No. 7 SS7
12.3.1 Structured DS1E1J2 N × 64 Kbps Service
This service is intended to emulate point-to-point fractional DS1, E1 and J2 circuits, where N takes the values: 1 ≤ N ≤ 24 for DS1; 1 ≤ N ≤ 31 for E1; and 1 ≤ N ≤ 96 for J2. CES must maintain 125-µsec frame integrity across the ATM connection. For example, given a 2 × 64 Kbps circuit, the 2 bytes that are sent to the input of the IWF in each frame have to be delivered at the output of the egress IWF in one frame and in the same order. The structured DS1E1J2 N × 64 Kbps service also requires synchronous circuit timing. The IWF service interface provides 1.544 MHz timing to external DS1 equipment, 2.048 MHz timing to external E1 equipment, and 6.312 MHz timing to external J2 equipment. The structured DS1E1J2 N × 64 Kbps service can support signaling in two modes: with CAS and without CAS. With the former, the CES IWF has to be able to recognize and transport to the egress IWF the ABCD signaling bits. In the non-CAS mode, also known as basic mode, there is no support for CAS. This basic mode can be used for applications not requiring signaling or those that provide signaling using CCS as used in N-ISDN. The AAL 1 CS structured data transfer protocol is used to transport fractional DS1E1J2. This protocol is described in detail in Section 3.7.1. A structured block is created by collect- ing N bytes, one from each of the N time slots, and grouping them in sequence. The SDT pointer points to the beginning of such a block. A significant source of delay is due to the packetization delay – that is, the amount of time it takes to collect enough data to fill a cell. This can be reduced by sending partially filled cells. This reduction in the delay is at the expense of higher cell rate. Partial fill is an optional feature of the CES IWF. The number of bytes that are sent in each cell can be set at the time the connection is established. When padding is used, the SDT pointer applies to both payload and padding. If a cell loss is detected at an egress IWF, a dummy cell is inserted. The content of the inserted cell is implementation dependent. If too many cells have been lost, the AAL 1 receiver will locate the next AAL 1 STD pointer to re-acquire framing.12.3.2 DS1E1J2 Unstructured Service
A large number of applications use DS1E1J2 interfaces that make use of the entire band- width of the TDM circuit. The unstructured service emulates a point-to-point DS1E1J2 304 VOICE OVER ATM AND MPLS circuit across an ATM network. The incoming bits from the DS1 circuit are simply placed sequentially into the payload of the AAL 1, without regard to framing, using the unstructured data transfer protocol see Section 3.7.1.12.4 THE ATM TRUNKING USING AAL 2 FOR NARROWBAND SERVICES
SPECIFICATION The ATM trunking using AAL 2 for narrowband services specification was designed to interconnect two distant public or private telephone networks over an ATM network. It can be used, for instance, to interconnect a distant PBX and a central office over an ATM network, such as PBX A and the central office in Figure 12.10. It can be also used to connect two distant PBXs over an ATM network, such as PBX B and C in Figure 12.10. A PBX or a central office is connected to an IWF over a T1E1 link. This specification is used in cellular telephony to transport multiple voice calls. The protocol stack of an IWF that supports the ATM trunking using AAL 2 for narrow- band service specification is shown in Figure 12.11. As can be seen, an IWF can transport IWF T1E1 IWF ATM network Central office PBX A PBX B IWF IWF PBX C T1E1 T1E1 T1E1 Figure 12.10 ATM trunking using AAL 2 for narrowband services. Circuit mode data services Nx64 Kbps User traffic Voiceband services Inband signaling User traffic PCM voice Compressed voice Facsimile demodulation AAL 2 SSCS for trunking SEG-SSCS Frame mode data services User traffic IWF-IWF CPS AAL 5 ATM layer Figure 12.11 The protocol stack of an IWF.Parts
» COMMUNICATION NETWORKS Connection Oriented Network
» An ATM Connection EXAMPLES OF CONNECTIONS
» An MPLS Connection EXAMPLES OF CONNECTIONS
» A Telephone Connection EXAMPLES OF CONNECTIONS
» A Wavelength Routing Optical Network Connection
» The American National Standards Institute ANSI
» The Institute of Electrical and Electronics Engineering IEEE
» The Internet Engineering Task Force IETF
» The ATM Forum STANDARDS COMMITTEES
» The MPLS and Frame Relay Alliance The Optical Internetworking Forum OIF
» The DSL Forum STANDARDS COMMITTEES
» The Section, Line, and Path Overheads
» The STS-1 Section, Line, and Path Overheads
» THE SONET STS-3 FRAME STRUCTURE
» SONETSDH DEVICES Connection Oriented Network
» Two-fiber Unidirectional Path Switched Ring 2F-UPSR
» Two-fiber Bidirectional Line Switched Ring 2F-BLSR
» Four-fiber Bidirectional Line Switched Ring 4F-BLSR
» GFP Client-independent Functions THE GENERIC FRAMING PROCEDURE GFP
» GFP Client-dependent Functions THE GENERIC FRAMING PROCEDURE GFP
» Virtual Concatenation DATA OVER SONETSDH DOS
» Link Capacity Adjustment Scheme LCAS
» INTRODUCTION Connection Oriented Network
» THE STRUCTURE OF THE HEADER OF THE ATM CELL
» The Transmission Convergence TC Sublayer
» The Physical Medium-Dependent PMD Sublayer
» THE ATM LAYER Connection Oriented Network
» Scheduling Algorithms THE ATM SWITCH ARCHITECTURE
» ATM Adaptation Layer 1 AAL 1
» ATM Adaptation Layer 2 AAL 2
» ATM Adaptation Layer 5 AAL 5
» ATMARP CLASSICAL IP AND ARP OVER ATM
» Types of Parameters TRAFFIC CHARACTERIZATION
» Standardized Traffic Descriptors
» Empirical Models TRAFFIC CHARACTERIZATION
» Probabilistic Models TRAFFIC CHARACTERIZATION
» QUALITY OF SERVICE QOS PARAMETERS
» The CBR Service ATM SERVICE CATEGORIES
» The RT-VBR Service ATM SERVICE CATEGORIES
» The NRT-VBR Service ATM SERVICE CATEGORIES
» The UBR Service ATM SERVICE CATEGORIES
» The ABR Service ATM SERVICE CATEGORIES
» The GFR Service ATM SERVICE CATEGORIES
» CONGESTION CONTROL Connection Oriented Network
» PREVENTIVE CONGESTION CONTROL Connection Oriented Network
» Equivalent Bandwidth CALL ADMISSION CONTROL CAC
» The ATM Block Transfer ABT Scheme
» Virtual Path Connections CALL ADMISSION CONTROL CAC
» The Generic Cell Rate Algorithm GCRA
» Packet Discard Schemes BANDWIDTH ENFORCEMENT
» The Available Bit Rate ABR Service
» THE SIGNALING PROTOCOL STACK
» The SSCOP THE SIGNALING ATM ADAPTATION LAYER SAAL
» Primitives THE SIGNALING ATM ADAPTATION LAYER SAAL
» THE SIGNALING CHANNEL Connection Oriented Network
» ATM ADDRESSING Connection Oriented Network
» THE FORMAT OF THE SIGNALING MESSAGE
» Information Elements IE THE SIGNALING PROTOCOL Q.2931
» Q.2931 Messages THE SIGNALING PROTOCOL Q.2931
» The IP Header THE INTERNET PROTOCOL IP: A PRIMER
» IP Addresses THE INTERNET PROTOCOL IP: A PRIMER
» Label Allocation Schemes THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» The Next Hop Label Forwarding Entry NHLFE
» Explicit Routing THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» An Example of the Use of the Label Stack
» Schemes for Setting up an LSP
» Hybrid ATM Switches MPLS OVER ATM
» Label Spaces, LDP Sessions, and Hello Adjacencies
» The LDP Messages THE LABEL DISTRIBUTION PROTOCOL LDP
» CR-LSP Setup Procedure THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» The Label Mapping Message The Traffic Parameters TLV
» Classes of Service THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» Reservation Styles THE RESOURCE RESERVATION PROTOCOL RSVP
» Soft State THE RESOURCE RESERVATION PROTOCOL RSVP
» The Path Message THE RESOURCE RESERVATION PROTOCOL RSVP
» The Resv Message THE RESOURCE RESERVATION PROTOCOL RSVP
» Service Classes and Reservation Styles
» The RSVP-TE Path and Resv Messages
» RSVP-TE Extensions THE RESOURCE RESERVATION PROTOCOL – TRAFFIC
» WDM OPTICAL NETWORKS Connection Oriented Network
» Multi-mode and Single-mode Optical Fibers
» Impairments HOW LIGHT IS TRANSMITTED THROUGH AN OPTICAL FIBER
» Photo-detectors and Optical Receivers
» Optical Amplifiers COMPONENTS
» Optical Cross-connects OXCs COMPONENTS
» Lightpaths WAVELENGTH ROUTING NETWORKS
» Traffic Grooming WAVELENGTH ROUTING NETWORKS
» Point-to-point Links WDM Optical Rings
» Mesh Optical Networks PROTECTION SCHEMES
» The Optical Channel Och Frame
» Overhead Types THE ITU-T G.709 STANDARD – THE DIGITAL WRAPPER
» CONTROL PLANE ARCHITECTURES Connection Oriented Network
» RSVP-TE Extensions For GMPLS
» LDP Extensions for UNI Signaling
» RSVP Extensions For UNI Signaling
» A Space Switch OPTICAL PACKET SWITCHING
» Reservation and Release of Resources in an OXC
» Scheduling of Bursts at an OBS Node
» Lost Bursts OPTICAL BURST SWITCHING OBS
» Signaling Messages THE JUMPSTART PROJECT
» The Signaling Message Structure
» Addressing THE JUMPSTART PROJECT
» The Routing Architecture THE JUMPSTART PROJECT
» The Discrete Multi-tone DMT Technique
» Bearer Channels THE ADSL-BASED ACCESS NETWORKS
» The ADSL Super Frame Schemes for Accessing Network Service Providers
» The ADSL2 and ADSL2+ Standards
» The Physical Layer THE CABLE-BASED ACCESS NETWORK
» The DOCSIS MAC Protocol Operation
» Frame Structures for Downstream and Upstream Transmission
» The PLOAM Cell THE ATM PASSIVE OPTICAL NETWORK
» The Divided-slots Cell THE ATM PASSIVE OPTICAL NETWORK
» Churning THE ATM PASSIVE OPTICAL NETWORK
» Ranging THE ATM PASSIVE OPTICAL NETWORK
» Channel-Associated Signaling CAS BACKGROUND
» Narrowband ISDN N-ISDN BACKGROUND
» Digital Subscriber Signaling System No. 1 DSS1
» VOICE OVER ATM SPECIFICATIONS
» Structured DS1E1J2 N × 64 Kbps Service DS1E1J2 Unstructured Service
» Switched and Non-Switched Trunking
» IWF Functionality for Switched Trunking
» IWF Functionality for Non-switched Trunking
» User Functions THE AAL 2 SERVICE-SPECIFIC CONVERGENCE SUBLAYER SSCS
» The Service-Specific Convergence Sublayer
» SSSAR THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSTED THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSADT THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
Show more