THE SIGNALING PROTOCOL STACK
5.3.2 Primitives
In the OSI model, the functions of a layer n provide a set of services which can be used by the next higher layer n + 1. The function of a layer n are built on services it requires from the next lower layer n − 1. The services in each layer are provided through a set of primitives. Each primitive might have one or more parameters that convey information required to provide the service. There are four basic types of primitives: request, indication, response , and confirm. A request type primitive is passed from a layer n to a lower layer n − 1 to request a service to be initiated. An indication type primitive is passed from a layer n − 1 to a higher layer n to indicate an event or condition significant to layer n. A response type primitive is passed from a layer n to a lower layer n − 1 to complete a procedure previously invoked by an indication primitive. Finally, a confirm type primitive is used by a layer n − 1 to pass results from one or more previously invoked request primitives to an upper layer n. These primitive types are also used between a signaling protocol and SAAL see Figure 5.4. SAAL functions are accessed by a signaling protocol through the AAL-SAP, using the primitives: AAL-ESTABLISH, AAL-RELEASE, AAL-DATA, and AAL-UNIT-DATA. The AAL-ESTABLISH is issued by a signaling protocol to SAAL in order to request the establishment of a connection over the UNI to its peer protocol. This is necessary, in order for the two peer signaling protocol to exchange signaling messages. This is a reliable connection that is managed by the SSCOP as described above. The AAL-RELEASE primitive is a request by a signaling protocol to SAAL to termi- nate a connection established earlier on using the AAL-ESTABLISH primitive. The AAL-DATA primitive is used by a signaling protocol to request the transfer of a signaling message to its peer signaling protocol. Signaling messages have a specific structure, and will be discussed below in detail. Finally the AAL-UNIT-DATA is used to request a data transfer over an unreliable connection. An example of how these primitives are used to establish a new connection over the UNI between two peer signaling protocols is shown in Figure 5.5. The primitive AAL- ESTABLISH.request is used to request SAAL to establish a connection. In order to simplify the presentation, we do not present the signals exchanged between the SSCF and the SSCOP. In response to this request, SSCOP sends a BEGIN frame to its peer SSCOP. Signaling protocol SAAL Signaling protocol SAAL request confirm indication response ATM end-station ATM switch Figure 5.4 The four primitive types. 122 SIGNALING IN ATM NETWORKS AAL-EST. request SAAL SAP BEGIN BEGIN ACK AAL-EST. indication AAL-EST. confirm SAAL SAP SSCOP SSCOP AAL-EST. response Figure 5.5 Establishment of a connection between two peer signaling protocols. The peer SAAL generates an AAL-ESTABLISH.indication to the peer signaling protocol, and its SSCOP returns a BEGIN ACKNOWLEDGE frame, upon receipt of which, the SAAL issues a AAL-ESTABLISH.confirm to the signaling protocol. An example of how a connection over the UNI between two peer signaling pro- tocols is terminated is shown in Figure 5.6. The signaling protocol issues an AAL- RELEASE.request to SAAL, in response of which the SSCOP sends an END frame to its peer SSCOP. The peer SAAL sends an AAL-RELEASE.indication to the peer sig- naling protocol, and its SSCOP returns an END ACKNOWLEDGE frame, upon receipt of which the SAAL issues a AAL-RELEASE.confirm to the signaling protocol. An example of how a signaling protocol transfers messages to its peer protocol is shown in Figure 5.7. The signaling protocol transfers a message to SAAL in an AAL- DATA.request, which is then transferred by SSCOP in an SD frame. The SD frame is passed onto AAL 5, which encapsulates it and then breaks it up to 48 byte segments, each of which is transferred by an ATM cell. Figure 5.7 also shows the POLLSTAT frames exchanged between the two peer SSCOPs. The SD frame at the destination side is delivered to the peer signaling protocol using the AAL-DATA.indication primitive. AAL-REL. indication SSCOP SSCOP AAL-REL. response AAL-REL. request SAAL SAP END END ACK AAL-REL. confirm SAAL SAP Figure 5.6 Termination of a connection between two peer signaling protocols.Parts
» COMMUNICATION NETWORKS Connection Oriented Network
» An ATM Connection EXAMPLES OF CONNECTIONS
» An MPLS Connection EXAMPLES OF CONNECTIONS
» A Telephone Connection EXAMPLES OF CONNECTIONS
» A Wavelength Routing Optical Network Connection
» The American National Standards Institute ANSI
» The Institute of Electrical and Electronics Engineering IEEE
» The Internet Engineering Task Force IETF
» The ATM Forum STANDARDS COMMITTEES
» The MPLS and Frame Relay Alliance The Optical Internetworking Forum OIF
» The DSL Forum STANDARDS COMMITTEES
» The Section, Line, and Path Overheads
» The STS-1 Section, Line, and Path Overheads
» THE SONET STS-3 FRAME STRUCTURE
» SONETSDH DEVICES Connection Oriented Network
» Two-fiber Unidirectional Path Switched Ring 2F-UPSR
» Two-fiber Bidirectional Line Switched Ring 2F-BLSR
» Four-fiber Bidirectional Line Switched Ring 4F-BLSR
» GFP Client-independent Functions THE GENERIC FRAMING PROCEDURE GFP
» GFP Client-dependent Functions THE GENERIC FRAMING PROCEDURE GFP
» Virtual Concatenation DATA OVER SONETSDH DOS
» Link Capacity Adjustment Scheme LCAS
» INTRODUCTION Connection Oriented Network
» THE STRUCTURE OF THE HEADER OF THE ATM CELL
» The Transmission Convergence TC Sublayer
» The Physical Medium-Dependent PMD Sublayer
» THE ATM LAYER Connection Oriented Network
» Scheduling Algorithms THE ATM SWITCH ARCHITECTURE
» ATM Adaptation Layer 1 AAL 1
» ATM Adaptation Layer 2 AAL 2
» ATM Adaptation Layer 5 AAL 5
» ATMARP CLASSICAL IP AND ARP OVER ATM
» Types of Parameters TRAFFIC CHARACTERIZATION
» Standardized Traffic Descriptors
» Empirical Models TRAFFIC CHARACTERIZATION
» Probabilistic Models TRAFFIC CHARACTERIZATION
» QUALITY OF SERVICE QOS PARAMETERS
» The CBR Service ATM SERVICE CATEGORIES
» The RT-VBR Service ATM SERVICE CATEGORIES
» The NRT-VBR Service ATM SERVICE CATEGORIES
» The UBR Service ATM SERVICE CATEGORIES
» The ABR Service ATM SERVICE CATEGORIES
» The GFR Service ATM SERVICE CATEGORIES
» CONGESTION CONTROL Connection Oriented Network
» PREVENTIVE CONGESTION CONTROL Connection Oriented Network
» Equivalent Bandwidth CALL ADMISSION CONTROL CAC
» The ATM Block Transfer ABT Scheme
» Virtual Path Connections CALL ADMISSION CONTROL CAC
» The Generic Cell Rate Algorithm GCRA
» Packet Discard Schemes BANDWIDTH ENFORCEMENT
» The Available Bit Rate ABR Service
» THE SIGNALING PROTOCOL STACK
» The SSCOP THE SIGNALING ATM ADAPTATION LAYER SAAL
» Primitives THE SIGNALING ATM ADAPTATION LAYER SAAL
» THE SIGNALING CHANNEL Connection Oriented Network
» ATM ADDRESSING Connection Oriented Network
» THE FORMAT OF THE SIGNALING MESSAGE
» Information Elements IE THE SIGNALING PROTOCOL Q.2931
» Q.2931 Messages THE SIGNALING PROTOCOL Q.2931
» The IP Header THE INTERNET PROTOCOL IP: A PRIMER
» IP Addresses THE INTERNET PROTOCOL IP: A PRIMER
» Label Allocation Schemes THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» The Next Hop Label Forwarding Entry NHLFE
» Explicit Routing THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» An Example of the Use of the Label Stack
» Schemes for Setting up an LSP
» Hybrid ATM Switches MPLS OVER ATM
» Label Spaces, LDP Sessions, and Hello Adjacencies
» The LDP Messages THE LABEL DISTRIBUTION PROTOCOL LDP
» CR-LSP Setup Procedure THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» The Label Mapping Message The Traffic Parameters TLV
» Classes of Service THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» Reservation Styles THE RESOURCE RESERVATION PROTOCOL RSVP
» Soft State THE RESOURCE RESERVATION PROTOCOL RSVP
» The Path Message THE RESOURCE RESERVATION PROTOCOL RSVP
» The Resv Message THE RESOURCE RESERVATION PROTOCOL RSVP
» Service Classes and Reservation Styles
» The RSVP-TE Path and Resv Messages
» RSVP-TE Extensions THE RESOURCE RESERVATION PROTOCOL – TRAFFIC
» WDM OPTICAL NETWORKS Connection Oriented Network
» Multi-mode and Single-mode Optical Fibers
» Impairments HOW LIGHT IS TRANSMITTED THROUGH AN OPTICAL FIBER
» Photo-detectors and Optical Receivers
» Optical Amplifiers COMPONENTS
» Optical Cross-connects OXCs COMPONENTS
» Lightpaths WAVELENGTH ROUTING NETWORKS
» Traffic Grooming WAVELENGTH ROUTING NETWORKS
» Point-to-point Links WDM Optical Rings
» Mesh Optical Networks PROTECTION SCHEMES
» The Optical Channel Och Frame
» Overhead Types THE ITU-T G.709 STANDARD – THE DIGITAL WRAPPER
» CONTROL PLANE ARCHITECTURES Connection Oriented Network
» RSVP-TE Extensions For GMPLS
» LDP Extensions for UNI Signaling
» RSVP Extensions For UNI Signaling
» A Space Switch OPTICAL PACKET SWITCHING
» Reservation and Release of Resources in an OXC
» Scheduling of Bursts at an OBS Node
» Lost Bursts OPTICAL BURST SWITCHING OBS
» Signaling Messages THE JUMPSTART PROJECT
» The Signaling Message Structure
» Addressing THE JUMPSTART PROJECT
» The Routing Architecture THE JUMPSTART PROJECT
» The Discrete Multi-tone DMT Technique
» Bearer Channels THE ADSL-BASED ACCESS NETWORKS
» The ADSL Super Frame Schemes for Accessing Network Service Providers
» The ADSL2 and ADSL2+ Standards
» The Physical Layer THE CABLE-BASED ACCESS NETWORK
» The DOCSIS MAC Protocol Operation
» Frame Structures for Downstream and Upstream Transmission
» The PLOAM Cell THE ATM PASSIVE OPTICAL NETWORK
» The Divided-slots Cell THE ATM PASSIVE OPTICAL NETWORK
» Churning THE ATM PASSIVE OPTICAL NETWORK
» Ranging THE ATM PASSIVE OPTICAL NETWORK
» Channel-Associated Signaling CAS BACKGROUND
» Narrowband ISDN N-ISDN BACKGROUND
» Digital Subscriber Signaling System No. 1 DSS1
» VOICE OVER ATM SPECIFICATIONS
» Structured DS1E1J2 N × 64 Kbps Service DS1E1J2 Unstructured Service
» Switched and Non-Switched Trunking
» IWF Functionality for Switched Trunking
» IWF Functionality for Non-switched Trunking
» User Functions THE AAL 2 SERVICE-SPECIFIC CONVERGENCE SUBLAYER SSCS
» The Service-Specific Convergence Sublayer
» SSSAR THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSTED THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSADT THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
Show more