The Physical Layer THE CABLE-BASED ACCESS NETWORK
11.3 THE ATM PASSIVE OPTICAL NETWORK
An APON is a cost-effective alternative to the telephone-based and cable-based access networks. An APON consists of an optical line terminator OLT, an optical distribution network ODN and optical network units ONU. The OLT, which resides at the premises of the APON operator, is responsible for transmitting and receiving traffic to and from the ONUs, which reside at the customer site. Also, the OLT has interfaces to a packet- switching backbone network. The OLT is connected to multiple ONUs via an optical distribution network. An APON, as its name implies, was designed with a view to carrying ATM traffic. As shown in the example given in Figure 11.18, the optical distribution network con- sists of optical fibers connected in the form of a tree. The signal transmitted from the OLT is passively split between multiple fibers, each leading to a different ONU. Passive splitters i.e., without electronic components, indicated by circles in Figure 11.18, are used to split the signal. These are made by twisting and heating optical fibers until the power output is evenly distributed. When a signal is split, there is always power loss, which means that there is a limit on how many times it can be split. An APON is a point-to-multipoint broadcast system in the downstream direction i.e., from the OLT to the ONUs, and a multipoint-to-point shared medium in the upstream direction i.e., from the ONUs to the OLT. The OLT transmits ATM cells which are received by all of the ONUs. The transmitted cells are scrambled using a churning key so that an ONU cannot read the cells destined to another ONU. Each ONU selects only the cells destined for it. In the upstream direction, only one ONU can transmit at a time; ONU ONU ONU ONU ONU 1 2 64 1 64 1 N OLT ATM network . . . . . . . . . Figure 11.18 An example of an APON. 282 ACCESS NETWORKS otherwise, cells transmitted from different ONUs might collide. A medium access protocol permits users to transmit in the upstream direction without collisions. The mechanism used for the downstream and upstream transmission is described below. An example of downstreamupstream transmission is given in Figure 11.19. The OLT transmits three cells: one for ONU A, one for ONU B, and one for ONU C. In Figure 11.19, a cell is represented by a square, with the name of the destination ONU written inside. The optical signal carrying these cells is split into three, and each ONU receives the same optical signal with all three ATM cells, of which it reads only the one destined for it. In the upstream direction, each ONU transmits one cell, and thanks to the medium access mechanism, the cells arrive at the OLT one after the other without any collisions. In this example, collisions can only occur on the link between the splitter, indicated by the circle, and the OLT. The link between an ONU and the splitter is not shared by other ONUs. Each cell transmitted by an ONU is propagated to the splitter with no possibility of colliding with cells from other ONUs. If all three of the ONUs transmit a cell at the same time and assuming that their distance from the splitter is the same, the cells will arrive at the splitter at the same time and will collide. The splitter will combine the three signals into a single signal, resulting in garbled information. As can be deduced from the above discussion, the splitter has two functions. On the downstream direction it splits the signal, and in the upstream direction it com- bines the incoming signals into a single signal. Thus, it works as a splitter and as a combiner at the same time. The downstream and upstream signals are transmitted on different wavelengths, and thus it is possible for both transmissions to take place at the same time. The optical line terminator OLT consists of an ATM switch, ATM interfaces to the backbone network, and ODN interfaces on the user side see Figure 11.20. Each ODN interface serves a different APON, and there are as many APONs as ODN interfaces. For instance, in the example given in Figure 11.18, there are N ODN interfaces and N different APONs, and in the example given in Figure 11.19 there is a single APON. APON was standardized by ITU-T in 1998 in recommendation G.983.1. APON has been defined by the full service access networks FSAN initiative as the common opti- cal transport technology. FSAN is an initiative from telecommunication operators and manufacturers formed in 1995 to develop a consensus on the system required in the local access network to deliver a full set of telecommunications services both narrowband and broadband. OLT C C ONU A ONU B ONU C B B A C B A C B B A C C B A A A Figure 11.19 An example of downstreamupstream transmission.Parts
» COMMUNICATION NETWORKS Connection Oriented Network
» An ATM Connection EXAMPLES OF CONNECTIONS
» An MPLS Connection EXAMPLES OF CONNECTIONS
» A Telephone Connection EXAMPLES OF CONNECTIONS
» A Wavelength Routing Optical Network Connection
» The American National Standards Institute ANSI
» The Institute of Electrical and Electronics Engineering IEEE
» The Internet Engineering Task Force IETF
» The ATM Forum STANDARDS COMMITTEES
» The MPLS and Frame Relay Alliance The Optical Internetworking Forum OIF
» The DSL Forum STANDARDS COMMITTEES
» The Section, Line, and Path Overheads
» The STS-1 Section, Line, and Path Overheads
» THE SONET STS-3 FRAME STRUCTURE
» SONETSDH DEVICES Connection Oriented Network
» Two-fiber Unidirectional Path Switched Ring 2F-UPSR
» Two-fiber Bidirectional Line Switched Ring 2F-BLSR
» Four-fiber Bidirectional Line Switched Ring 4F-BLSR
» GFP Client-independent Functions THE GENERIC FRAMING PROCEDURE GFP
» GFP Client-dependent Functions THE GENERIC FRAMING PROCEDURE GFP
» Virtual Concatenation DATA OVER SONETSDH DOS
» Link Capacity Adjustment Scheme LCAS
» INTRODUCTION Connection Oriented Network
» THE STRUCTURE OF THE HEADER OF THE ATM CELL
» The Transmission Convergence TC Sublayer
» The Physical Medium-Dependent PMD Sublayer
» THE ATM LAYER Connection Oriented Network
» Scheduling Algorithms THE ATM SWITCH ARCHITECTURE
» ATM Adaptation Layer 1 AAL 1
» ATM Adaptation Layer 2 AAL 2
» ATM Adaptation Layer 5 AAL 5
» ATMARP CLASSICAL IP AND ARP OVER ATM
» Types of Parameters TRAFFIC CHARACTERIZATION
» Standardized Traffic Descriptors
» Empirical Models TRAFFIC CHARACTERIZATION
» Probabilistic Models TRAFFIC CHARACTERIZATION
» QUALITY OF SERVICE QOS PARAMETERS
» The CBR Service ATM SERVICE CATEGORIES
» The RT-VBR Service ATM SERVICE CATEGORIES
» The NRT-VBR Service ATM SERVICE CATEGORIES
» The UBR Service ATM SERVICE CATEGORIES
» The ABR Service ATM SERVICE CATEGORIES
» The GFR Service ATM SERVICE CATEGORIES
» CONGESTION CONTROL Connection Oriented Network
» PREVENTIVE CONGESTION CONTROL Connection Oriented Network
» Equivalent Bandwidth CALL ADMISSION CONTROL CAC
» The ATM Block Transfer ABT Scheme
» Virtual Path Connections CALL ADMISSION CONTROL CAC
» The Generic Cell Rate Algorithm GCRA
» Packet Discard Schemes BANDWIDTH ENFORCEMENT
» The Available Bit Rate ABR Service
» THE SIGNALING PROTOCOL STACK
» The SSCOP THE SIGNALING ATM ADAPTATION LAYER SAAL
» Primitives THE SIGNALING ATM ADAPTATION LAYER SAAL
» THE SIGNALING CHANNEL Connection Oriented Network
» ATM ADDRESSING Connection Oriented Network
» THE FORMAT OF THE SIGNALING MESSAGE
» Information Elements IE THE SIGNALING PROTOCOL Q.2931
» Q.2931 Messages THE SIGNALING PROTOCOL Q.2931
» The IP Header THE INTERNET PROTOCOL IP: A PRIMER
» IP Addresses THE INTERNET PROTOCOL IP: A PRIMER
» Label Allocation Schemes THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» The Next Hop Label Forwarding Entry NHLFE
» Explicit Routing THE MULTI-PROTOCOL LABEL SWITCHING MPLS ARCHITECTURE
» An Example of the Use of the Label Stack
» Schemes for Setting up an LSP
» Hybrid ATM Switches MPLS OVER ATM
» Label Spaces, LDP Sessions, and Hello Adjacencies
» The LDP Messages THE LABEL DISTRIBUTION PROTOCOL LDP
» CR-LSP Setup Procedure THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» The Label Mapping Message The Traffic Parameters TLV
» Classes of Service THE CONSTRAINED-BASED ROUTING LABEL DISTRIBUTION
» Reservation Styles THE RESOURCE RESERVATION PROTOCOL RSVP
» Soft State THE RESOURCE RESERVATION PROTOCOL RSVP
» The Path Message THE RESOURCE RESERVATION PROTOCOL RSVP
» The Resv Message THE RESOURCE RESERVATION PROTOCOL RSVP
» Service Classes and Reservation Styles
» The RSVP-TE Path and Resv Messages
» RSVP-TE Extensions THE RESOURCE RESERVATION PROTOCOL – TRAFFIC
» WDM OPTICAL NETWORKS Connection Oriented Network
» Multi-mode and Single-mode Optical Fibers
» Impairments HOW LIGHT IS TRANSMITTED THROUGH AN OPTICAL FIBER
» Photo-detectors and Optical Receivers
» Optical Amplifiers COMPONENTS
» Optical Cross-connects OXCs COMPONENTS
» Lightpaths WAVELENGTH ROUTING NETWORKS
» Traffic Grooming WAVELENGTH ROUTING NETWORKS
» Point-to-point Links WDM Optical Rings
» Mesh Optical Networks PROTECTION SCHEMES
» The Optical Channel Och Frame
» Overhead Types THE ITU-T G.709 STANDARD – THE DIGITAL WRAPPER
» CONTROL PLANE ARCHITECTURES Connection Oriented Network
» RSVP-TE Extensions For GMPLS
» LDP Extensions for UNI Signaling
» RSVP Extensions For UNI Signaling
» A Space Switch OPTICAL PACKET SWITCHING
» Reservation and Release of Resources in an OXC
» Scheduling of Bursts at an OBS Node
» Lost Bursts OPTICAL BURST SWITCHING OBS
» Signaling Messages THE JUMPSTART PROJECT
» The Signaling Message Structure
» Addressing THE JUMPSTART PROJECT
» The Routing Architecture THE JUMPSTART PROJECT
» The Discrete Multi-tone DMT Technique
» Bearer Channels THE ADSL-BASED ACCESS NETWORKS
» The ADSL Super Frame Schemes for Accessing Network Service Providers
» The ADSL2 and ADSL2+ Standards
» The Physical Layer THE CABLE-BASED ACCESS NETWORK
» The DOCSIS MAC Protocol Operation
» Frame Structures for Downstream and Upstream Transmission
» The PLOAM Cell THE ATM PASSIVE OPTICAL NETWORK
» The Divided-slots Cell THE ATM PASSIVE OPTICAL NETWORK
» Churning THE ATM PASSIVE OPTICAL NETWORK
» Ranging THE ATM PASSIVE OPTICAL NETWORK
» Channel-Associated Signaling CAS BACKGROUND
» Narrowband ISDN N-ISDN BACKGROUND
» Digital Subscriber Signaling System No. 1 DSS1
» VOICE OVER ATM SPECIFICATIONS
» Structured DS1E1J2 N × 64 Kbps Service DS1E1J2 Unstructured Service
» Switched and Non-Switched Trunking
» IWF Functionality for Switched Trunking
» IWF Functionality for Non-switched Trunking
» User Functions THE AAL 2 SERVICE-SPECIFIC CONVERGENCE SUBLAYER SSCS
» The Service-Specific Convergence Sublayer
» SSSAR THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSTED THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
» SSADT THE SEGMENTATION AND REASSEMBLY SSCS FOR AAL 2
Show more